Sự thuyên giảm ung thư tự phát sau COVID-19: những hiểu biết từ đại dịch và ý nghĩa của chúng đối với điều trị ung thư

Journal of Translational Medicine - Tập 21 - Trang 1-13 - 2023
Concetta Meo1, Giuseppe Palma2, Francesca Bruzzese2, Alfredo Budillon3, Claudio Napoli4,5, Filomena de Nigris1
1Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
2S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
3Scientific Directorate - National Institute of Cancer - IRCCS - Fondazione G. Pascale, Naples, Italy
4Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), Naples, Italy
5Advanced Medical and Surgical Science (DAMSS), School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy

Tóm tắt

Ngay từ giai đoạn đầu của đại dịch COVID-19, đã xuất hiện thông tin rằng nguy cơ xảy ra những hậu quả nghiêm trọng cao hơn ở những bệnh nhân có bệnh lý đi kèm, bao gồm ung thư. Nỗ lực to lớn được thực hiện để chống lại đại dịch đã ảnh hưởng đến việc quản lý chăm sóc ung thư, tác động đến kết quả điều trị của bệnh nhân. Mặc dù tỷ lệ tử vong cao của bệnh COVID-19 ở bệnh nhân ung thư, nhưng đã có báo cáo về những trường hợp hiếm hoi về sự thuyên giảm lâm sàng tạm thời hoặc kéo dài của các loại ung thư sau khi nhiễm virus SARS-CoV-2. Chúng tôi đã xem xét mười sáu báo cáo trường hợp bệnh COVID-19 có sự giảm tiến triển tự phát của ung thư. Bốn trường hợp thuyên giảm xảy ra sau khi nhiễm virus và hai trường hợp sau khi tiêm vắc xin chống SARS-CoV-2. Phản ứng miễn dịch đối với COVID-19 có thể liên quan đến cả sự thoái lui và tiến triển của khối u. Cụ thể, chúng tôi thảo luận về các cơ chế tiềm năng bao gồm giả thuyết oncolytic và giả thuyết kích thích, có thể đã góp phần vào sự thoái lui ung thư trong những trường hợp này và có thể hữu ích cho các lựa chọn điều trị ung thư trong tương lai.

Từ khóa

#COVID-19 #ung thư #thuyên giảm tự phát #SARS-CoV-2 #phản ứng miễn dịch

Tài liệu tham khảo

Grivas P, Khaki AR, Wise-Draper TM, French B, Hennessy C, Hsu CY, Shyr Y, Li X, Choueiri TK, Painter CA, et al. Association of clinical factors and recent anticancer therapy with COVID-19 severity among patients with cancer: a report from the COVID-19 and cancer consortium. Ann Oncol. 2021;32:787–800. Lièvre A, Turpin A, Ray-Coquard I, Le Malicot K, Thariat J, Ahle G, Neuzillet C, Paoletti X, Bouché O, Aldabbagh K, et al. Risk factors for Coronavirus Disease 2019 (COVID-19) severity and mortality among solid cancer patients and impact of the disease on anticancer treatment: a french nationwide cohort study (GCO-002 CACOVID-19). Eur J Cancer. 2020;141:62–81. Deftereos SG, Siasos G, Giannopoulos G, Vrachatis DA, Angelidis C, Giotaki SG, Gargalianos P, Giamarellou H, Gogos C, Daikos G, et al. The greek study in the effects of colchicine in Covid-19 complications prevention (GRECCO-19 study): rationale and study design. Hellenic J Cardiol. 2020;61:42–5. de Joode K, Dumoulin DW, Tol J, Westgeest HM, Beerepoot LV, van den Berkmortel FWPJ, Mutsaers PGNJ, van Diemen NGJ, Visser OJ, Oomen-de Hoop E, et al. Dutch oncology COVID-19 consortium: outcome of COVID-19 in patients with cancer in a nationwide cohort study. Eur J Cancer. 2020;141:171–84. Nader Marta G, Colombo Bonadio R, Nicole Encinas Sejas O, Watarai G, Mathias Machado MC, Teixeira Frasson L, Motta Venchiarutti Moniz C, de Luca Ito RK, Peixoto D, Oliveira Hoff C, et al. Outcomes and prognostic factors in a large cohort of hospitalized cancer patients with COVID-19. JCO Glob Oncol. 2021;7:1084–92. Passamonti F, Cattaneo C, Arcaini L, Bruna R, Cavo M, Merli F, Angelucci E, Krampera M, Cairoli R, Della Porta MG, et al. Investigators. clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol. 2020;7:e737-45. Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4 + and CD8 + T cell-mediated immunity induced by infection and vaccination. J Clin Virol. 2019;119:44–52. Dock G. The influence of complicating diseases upon leukæmia. Am J Med Sci. 2019;127:563–92. Taqi AM, Abdurrahman MB, Yakubu AM, Fleming AF. Regression of Hodgkin’s disease after measles. Lancet. 1981;1:1112. Bluming AZ, Ziegler JL. Regression of burkitt’s lymphoma in association with measles infection. Lancet. 1971;2:105–6. Challenor S, Tucker D. SARS-CoV-2 -induced remission of hodgkin lymphoma. Br J Haematol. 2021;192:415. Barkhordar M, Rostami FT, Yaghmaie M, Abbaszadeh M, Chahardouli B, Mousavi SA. Spontaneous complete remission of acute myeloid leukemia in the absence of disease-modifying therapy following severe pulmonary involvement by coronavirus infectious disease-19. Case Rep Hematol. 2022. Kandeel EZ, Refaat L, Abdel-Fatah R, Samra M, Bayoumi A, Abdellateif MS, Abdel-Hady H, Ali M, Khafagy M. Could COVID-19 induce remission of acute leukemia? Hematology. 2021;26:870–3. Baptista RL, Moreira R, Rego E. COVID-19 induced follicular lymphoma remission. Hematol Transfus Cell Ther. 2022;44:291–2. Sollini M, Gelardi F, Carlo-Stella C, Chiti A. Complete remission of follicular lymphoma after SARS-CoV-2 infection: from the “flare phenomenon” to the “abscopal effect. Eur J Nucl Med Mol Imaging. 2021;48:2652–4. Pasin F, Mascalchi Calveri M, Calabrese A, Pizzarelli G, Bongiovanni I, Andreoli M, Cattaneo C, Rignanese G. Oncolytic effect of SARS-CoV2 in a patient with NK lymphoma. Acta Biomed. 2020. Antwi-Amoabeng D, Ulanja MB, Beutler BD, Reddy SV. Multiple myeloma remission following COVID-19: an observation in search of a mechanism (a case report). Pan Afr Med J. 2021;39:117. Bülbül H, Nazlı HE, Olgun A, Togay A, Kahraman DS. Spontaneous remission of chronic lymphocytic leucemia in a patient with SARS-CoV2. Leuk Res Rep. 2022;18:100336. Buchler T, Fiser L, Benesova J, Jirickova H, Votrubova J. Spontaneous regression of metastatic renal cell carcinoma after SARS-CoV-2 infection: a report of two cases. Curr Oncol. 2021;28:3403–7. Ottaiano A, Scala S, D’Alterio C, rotta A, Bello A, Rea G, Picone C, Santorsola M, Petrillo A, Nasti G. Unexpected tumor reduction in metastatic colorectal cancer patients during SARS-CoV-2 infection. Ther Adv Med Oncol. 2021;13:17588359211011455. Ottaiano A, Santorsola M, Circelli L, Trotta AM, Izzo F, Perri F, Cascella M, Sabbatino F, Granata V, Correra M, et al. Genetic landscape of colorectal cancer patients manifesting tumor shrinkage during SARS-CoV-2 infection. Ther Adv Med Oncol. 2022;14:17588359221138388. Gambichler T, Boms S, Hessam S, Tischoff I, Tannapfel A, Lüttringhaus T, Beckman J, Stranzenbach R. Primary cutaneous anaplastic large-cell lymphoma with marked spontaneous regression of organ manifestation after SARS-CoV-2 vaccination. Br J Dermatol. 2021;185:1259–62. Sousa LG, Marques-Piubelli ML, Gonzalez C, Dai H, Ferri-Borgogno S, Godoy M, Burks J, Lin SY, Bell D, Ferrarotto R. Spontaneous tumor regression following COVID-19 vaccination. J Immunother Cancer. 2022;10:e004371. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: can treg cells be a new therapeutic target? Cancer Sci. 2019;110:2080–9. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9. Ho KH. Spontaneous regression of cancer: a therapeutic role for pyrogenic infections? AMSJ. 2012;3:30–3. Sengupta N, MacFie TS, MacDonald TT, Pennington D, Silver AR. Cancer immunoediting and “spontaneous” tumor regression. Pathol Res Pract. 2010;206:1–8. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20:363–74. Hosseini A, Hashemi V, Shomali N, Asghari F, Gharibi T, Akbari M, Gholizadeh S, Jafari A. Innate and adaptive immune responses against coronavirus. Biomed Pharmacother. 2020;132:110859. Kircheis R, Haasbach E, Lueftenegger D, Heyken WT, Ocker M, Planz O. NF-κB pathway as a potential target for treatment of critical stage COVID-19 patients. Front Immunol. 2020;11:598444. Li Y, Feng J, Liu M, Gan S, Wu H, Fan W, Shi M. Inflammasome Signaling: a novel paradigm of hub platform in innate immunity for cancer immunology and immunotherapy. Front Immunol. 2021;12:710110. de Candia P, Prattichizzo F, Garavelli S, Matarese GT. Cells: warriors of SARS-CoV-2 infection. Trends Immunol. 2021;42:18–30. Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H, van den Akker JPC, Molenkamp R, Koopmans MPG, van Gorp ECM. Phenotype and kinetics of SARS-CoV-2 -specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020;5:2071. Melenotte C, Silvin A, Goubet AG, Lahmar I, Dubuisson A, Zumla A, Raoult D, Merad M, Gachot B, Hénon C. Immune responses during COVID-19 infection. Oncoimmunology. 2020;9:1807836. Sullivan RJ, Johnson DB, Rini BI, Neilan TG, Lovly CM, Moslehi JJ, Reynolds KL. COVID-19 and immune checkpoint inhibitors: initial considerations. J Immunother Cancer. 2020;8:e000933. Barh D, Tiwari S, Gabriel Rodrigues Gomes L, Weener ME, Alzahrani KJ, Alsharif KF, Aljabali AAA, Tambuwala MM, Lundstrom K, et al. Potential molecular mechanisms of rare anti-tumor immune response by SARS-CoV-2 in isolated cases of lymphomas. Viruses. 2021;13:1927. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26:1636–43. Sau A, Lau R, Cabrita MA, Nolan E, Crooks PA, Visvader JE, Pratt MA. Persistent activation of NF-κB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell. 2016;19:52–65. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. Kiwerska K, Szyfter K. DNA repair in cancer initiation, progression, and therapy-a double-edged sword. J Appl Genet. 2019;60:329–34. Zong Z, Wei Y, Ren J, Zhang L, Zhou F. The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Mol Cancer. 2021;20:76. Tseng JC, Granot T, Di Giacomo V, Levin B, Meruelo D. Enhanced specific delivery and targeting of oncolytic sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther. 2010;17:244–55. Matveeva O, Kochneva G, Netesov S, Onikienko SB, Chumakov PM. Mechanisms of oncolysis by paramyxovirus Sendai. Acta Naturae. 2015;7:6–16. Azevedo RB, Botelho BG, Hollanda JVG, Ferreira LVL, Junqueira de Andrade LZ, Oei SSML, Mello TS, Muxfeldt ES. Covid-19 and the cardiovascular system: a comprehensive review. J Hum Hypertension. 2021;35:4–11. Aghagoli G, Gallo Marin B, Katchur NJ, Chaves-Sell F, Asaad WF, Murphy SA. Neurological involvement in COVID-19 and potential mechanisms: a review. Neurocrit Care. 2021;34:1062–71. Bravi CA, Cazzaniga W, Simonini M, Larcher A, Messaggio E, Zagato L, Carenzi C, Bertini R, Briganti A, Manunta P, Vezzoli G, Salonia A, Lanzani C, et al. Acute kidney injury at hospital admission for SARS-CoV-2 infection as a marker of poor prognosis: clinical implications for triage risk stratification. Kidney Blood Press Res. 2022;47:147–50. Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res. 2020;226:57–69. Pelkmans L, Helenius A. Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol. 2003;15:414–22. Astuti I, Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 2020;14:407–12. Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol. 2020;205:307–12. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017;3:841–9. Donia A, Shahid R, Nawaz M, Yaqub T, Bokhari H. Can we develop oncolytic SARS-CoV-2 to specifically target cancer cells? Ther Adv Med Oncol. 2021;13:17588359211061988. Wang Y, Fan Y, Huang Y, Du T, Liu Z, Huang D, Wang Y, Wang N, Zhang P. TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2. Cell Signal. 2021;85:110064. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, Xia B, Ma X, Yang T, Yu F, Liu J, Liu B, Song Z, Chen J, Yan S, Wu L, Pan T, Zhang X, Li R, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A. 2021;118:e2024202118. Mosca L, de Angelis A, Ronchi A, De Chiara A, Fazioli F, Ruosi C, Altucci L, Conte M, de Nigris F. Sarcoma common MHC-I haplotype restricts tumor-specific CD8 + T cell response. Cancers (Basel). 2022;14:3414. Xia P, Dubrovska A. Tumor markers as an entry for SARS-CoV-2 infection? FEBS J. 2020;287:3677–80. Ren HL, Wen GM, Zhao ZY, Liu DH, Xia P. Can CD147 work as a therapeutic target for tumors through COVID-19 infection? Int J Med Sci. 2022;19:2087–92. Ma-Lauer Y, Carbajo-Lozoya J, Hein MY, Müller MA, Deng W, Lei J, Meyer B, Kusov Y, von Brunn B, Bairad DR, Hünten S, Drosten C, Hermeking H, Leonhardt H, et al. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. Proc Natl Acad Sci U S A. 2016;113:E5192–201. Bhardwaj K, Liu P, Leibowitz JL, Kao CC. The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein. J Virol. 2012;86:4294–304. Singh N, Bharara Singh A. S2 subunit of SARS-nCoV-2 interacts with tumor suppressor protein p53 and BRCA: an in silico study. Transl Oncol. 2020;13:100814. Andtbacka RHI, Kaufman HL, Collichio F. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8. Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther Oncol. 2019;15:234–47. Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother. 2018;14:839–46. McKinney EF, Smith KG. T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol. 2016;43:74–80. Wang X, Lu XJ, Sun B. The pros and cons of dying tumour cells in adaptive immune responses. Nat Rev Immunol. 2017;17:591. Mortezaee K, Majidpoor J. CD8 + T cells in SARS-CoV-2 induced disease and cancer-clinical perspectives. Front Immunol. 2022;13:864298. Grimaldi V, Benincasa G, Moccia G, Sansone A, Signoriello G, Napoli C. Evaluation of circulating leucocyte populations both in subjects with previous SARS-COV-2 infection and in healthy subjects after vaccination. J Immunol Methods. 2022;502:113230. Napoli C, Tritto I, Mansueto G, Coscioni E, Ambrosio G. Immunosenescence exacerbates the COVID-19. Arch Gerontol Geriatr. 2020;90:104174. Marfella R, Sardu C, D’Onofrio N, Prattichizzo F, Scisciola L, Messina V, La Grotta R, Balestrieri ML, Maggi P, Napoli C, Ceriello A, Paolisso G. Glycaemic control is associated with SARS-CoV-2 breakthrough infections in vaccinated patients with type 2 diabetes. Nat Commun. 2022;13:2318. Kuderer NM, Choueiri TK, Shah DP, Shyr Y, Rubinstein SM, Rivera DR, Shete S, Hsu CY, Desai A, de Lima Lopes G Jr, Grivas P, Painter CA, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395:1907–18. Engelmann R, Jaekel N, Jotschke S, Ludwig-Kraus B, Kraus FB, Kumari N, Schulze S, Hecker M, Zahn C, Al-Ali HK, Junghanss C, Böttcher S. Vector-based SARS-CoV-2 vaccination is associated with improved T-cell responses in hematological neoplasia. Blood Adv. 2023. Napoli C, Benincasa G, Criscuolo C, Faenza M, Liberato C, Rusciano M. Immune reactivity during COVID-19: implications for treatment. Immunol Lett. 2021;231:28–34.