Spontaneous Transient Outward Currents Arise from Microdomains Where BK Channels Are Exposed to a Mean Ca2+ Concentration on the Order of 10 μM during a Ca2+ Spark

Journal of General Physiology - Tập 120 Số 1 - Trang 15-27 - 2002
Ronghua ZhuGe1, Kevin E. Fogarty1, Richard A. Tuft1, John V. Walsh1
1Biomedical Imaging Group, Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655

Tóm tắt

Ca2+ sparks are small, localized cytosolic Ca2+ transients due to Ca2+ release from sarcoplasmic reticulum through ryanodine receptors. In smooth muscle, Ca2+ sparks activate large conductance Ca2+-activated K+ channels (BK channels) in the spark microdomain, thus generating spontaneous transient outward currents (STOCs). The purpose of the present study is to determine experimentally the level of Ca2+ to which the BK channels are exposed during a spark. Using tight seal, whole-cell recording, we have analyzed the voltage-dependence of the STOC conductance (g(STOC)), and compared it to the voltage-dependence of BK channel activation in excised patches in the presence of different [Ca2+]s. The Ca2+ sparks did not change in amplitude over the range of potentials of interest. In contrast, the magnitude of g(STOC) remained roughly constant from 20 to −40 mV and then declined steeply at more negative potentials. From this and the voltage dependence of BK channel activation, we conclude that the BK channels underlying STOCs are exposed to a mean [Ca2+] on the order of 10 μM during a Ca2+ spark. The membrane area over which a concentration ≥10 μM is reached has an estimated radius of 150–300 nm, corresponding to an area which is a fraction of one square micron. Moreover, given the constraints imposed by the estimated channel density and the Ca2+ current during a spark, the BK channels do not appear to be uniformly distributed over the membrane but instead are found at higher density at the spark site.

Từ khóa


Tài liệu tham khảo

1997, Cell Calcium., 22, 399, 10.1016/S0143-4160(97)90024-5

1989, Science., 244, 211, 10.1126/science.2704996

1986, J. Physiol., 381, 385, 10.1113/jphysiol.1986.sp016333

1991, Nature., 351, 751, 10.1038/351751a0

1998, Acta Physiol. Scand., 164, 567, 10.1046/j.1365-201X.1998.00464.x

1984, J. Physiol., 357, 185, 10.1113/jphysiol.1984.sp015496

2000, Nature., 407, 870, 10.1038/35038011

1983, Cell Calcium., 4, 407, 10.1016/0143-4160(83)90017-9

1995, Science., 268, 1045, 10.1126/science.7754384

1996, Am. J. Physiol., 271, C9, 10.1152/ajpcell.1996.271.1.C9

1999, J. Physiol., 516, 117, 10.1111/j.1469-7793.1999.117aa.x

1982, Methods Enzymol., 85, 284, 10.1016/0076-6879(82)85027-1

1998, Circ. Res., 83, 1104, 10.1161/01.RES.83.11.1104

2001, Am. J. Physiol., 280, C481, 10.1152/ajpcell.2001.280.3.C481

2001, J. Physiol., 531, 315, 10.1111/j.1469-7793.2001.0315i.x

1997, Proc. Natl. Acad. Sci. USA., 94, 11061, 10.1073/pnas.94.20.11061

1995, Science., 268, 1042, 10.1126/science.7754383

1996, FEBS Lett., 382, 84, 10.1016/0014-5793(96)00151-2

1999, J. Gen. Physiol., 113, 177, 10.1085/jgp.113.2.177

1996, Cell Calcium., 20, 153, 10.1016/S0143-4160(96)90104-9

1997, J. Neurosci., 17, 6961, 10.1523/JNEUROSCI.17-18-06961.1997

1995, Science., 270, 633, 10.1126/science.270.5236.633

2001, J. Physiol., 534, 313, 10.1111/j.1469-7793.2001.t01-3-00313.x

1999, J. Gen. Physiol., 113, 229, 10.1085/jgp.113.2.229

2001, Am. J. Physiol., 281, C1769, 10.1152/ajpcell.2001.281.6.C1769

2000, Circ. Res., 87, e53

1987, Pflugers Arch., 408, 98, 10.1007/BF00581337

1985, Experientia., 41, 841, 10.1007/BF01970000

1992, Cell Calcium., 13, 183, 10.1016/0143-4160(92)90046-U

1997, J. Physiol., 502, 545, 10.1111/j.1469-7793.1997.545bj.x

1999, Proc. Natl. Acad. Sci. USA., 96, 4137, 10.1073/pnas.96.7.4137

1992, Pflugers Arch., 420, 112, 10.1007/BF00378651

1998, J. Physiol., 513, 711, 10.1111/j.1469-7793.1998.711ba.x

1998, J. Gen. Physiol., 112, 113, 10.1085/jgp.112.2.113

1999, J. Gen. Physiol., 113, 215, 10.1085/jgp.113.2.215

2000, J. Gen. Physiol., 116, 845, 10.1085/jgp.116.6.845