Spinal plasticity in robot-mediated therapy for the lower limbs
Tóm tắt
Robot-mediated therapy can help improve walking ability in patients following injuries to the central nervous system. However, the efficacy of this treatment varies between patients, and evidence for the mechanisms underlying functional improvements in humans is poor, particularly in terms of neural changes in the spinal cord. Here, we review the recent literature on spinal plasticity induced by robotic-based training in humans and propose recommendations for the measurement of spinal plasticity using robotic devices. Evidence for spinal plasticity in humans following robotic training is limited to the lower limbs. Body weight-supported (BWS) robotic-assisted step training of patients with spinal cord injury (SCI) or stroke patients has been shown to lead to changes in the amplitude and phase modulation of spinal reflex pathways elicited by electrical stimulation or joint rotations. Of particular importance is the finding that, among other changes to the spinal reflex circuitries, BWS robotic-assisted step training in SCI patients resulted in the re-emergence of a physiological phase modulation of the soleus H-reflex during walking. Stretch reflexes elicited by joint rotations constitute a tool of interest to probe spinal circuitry since the technology necessary to produce these perturbations could be integrated as a natural part of robotic devices. Presently, ad-hoc devices with an actuator capable of producing perturbations powerful enough to elicit the reflex are available but are not part of robotic devices used for training purposes. A further development of robotic devices that include the technology to elicit stretch reflexes would allow for the spinal circuitry to be routinely tested as a part of the training and evaluation protocols.
Tài liệu tham khảo
Esquenazi A, Packel A. Robotic-assisted gait training and restoration. American Journal of Physical Medicine and Rehabilitation. 2012;91:S217–31.
Hornby TG, Campbell DD, Kahn, JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: A randomized controlled study. Stroke. 2008;39(6):1786–92.
Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, Katz-Leurer M et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM&R. 2009;1(6):516–23.
Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: A single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.
Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011;48(4):387–416.
Keller, T. COST Action TD1006. http://www.cost.eu/domains_actions/bmbs/Actions/TD1006 04.08.2014].
Edgerton VR, Roy RR. Robotic training and spinal cord plasticity. Brain Res Bull. 2009;78(1):4–12.
Patel S, Ho JT, Lai K, Ahangar B, Burgar GC, Scremin AE. Changes in motoneuron excitability in hemiplegic subjects after passive exercise when using a robotic arm. Arch Phys Med Rehabil. 2006;87(9):1257–61.
Kao PC, Lewis CL, Ferris DP. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. J Neuroeng Rehabil. 2010;7:33.
Blicher JU, Nielsen JF. Cortical and spinal excitability changes after robotic gait training in healthy participants. Neurorehabil Neural Repair. 2009;23(2):143–9.
Mummidisetty CK, Smith AC, Knikou M. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Clin Neurophysiol. 2013;124(3):557–64.
Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013;228(3):279–96.
Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014;111(11):2264–75.
Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol. 2015;113(7):2447–60.
Smith AC, Mummidisetty C, Rymer WZ, Knikou M. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury. J Neurophysiol. 2014;112(9):2164–75.
Smith AC, Rymer WZ, Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Exp Brain Res. 2015;233(1):89–103.
Mirbagheri MM, Kindig MW, Niu X. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury. Clin Neurophysiol. 2015;126(5):997–1006.
Trompetto C, Marinelli L, Mori L, Cossu E, Ziliolo R, Simonini M et al. Postactivation depression changes after robotic-assisted gait training in hemiplegic stroke patients. Gait Posture. 2013;38(4):729–33.
Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996;108(3):450–62.
Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sorensen F, Ravnborg M et al. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res. 2008;185(2):189–97.
Hendricks HT, Pasman JW, Merx JL, van Limbeek J, Zwarts MJ. Analysis of recovery processes after stroke by means of transcranial magnetic stimulation. J Clin Neurophysiol. 2003;20(3):188–95.
Avanzino L, Tacchino A, Abbruzzese G, Quartarone A, Ghilardi MF, Bonzano L et al. Recovery of motor performance deterioration induced by a demanding finger motor task does not follow cortical excitability dynamics. Neuroscience. 2011;174:84–90.
Thompson AK, Pomerantz FR, Wolpaw JR. Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci. 2013;33(6):2365–75.
Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci. 2014;8:25.
Thompson AK, Wolpaw JR. Restoring Walking after Spinal Cord Injury: Operant Conditioning of Spinal Reflexes Can Help. Neuroscientist. 2015;21(2):203–15.
Wolpaw JR. What can the spinal cord teach us about learning and memory? Neuroscientist. 2010;16(5):532–49.
Wolpaw JR, Tennissen AM. Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci. 2001;24(1):807–43.
Makihara Y, Silva PdB, Thompson AK, Mrachacz-Kersting N. Operant conditioning of soleus stretch reflex in humans, in Society for Neuroscience Abstracts. LA: Society for Neuroscience Abstracts: New Orleans; 2012.
Mrachacz-Kersting N,Silva PdB, Makihara Y, Arendt-Nielsen L, Sinkjaer T, Kersting U. Stretch reflex conditioning in humans: Implications for function, in Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation: Proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR2014), Aalborg, 24–26 June, 2014, W. Jensen, O.K. Andersen, and M. Akay, Editors. 2014, Springer International Publishing. p. 103–111. doi:10.1007/978-3-319-08072-7_20.
Silva PdB, Makihara Y, Thompson AK, Kersting U, Mrachacz-Kersting N. Operant up-conditioning of soleus stretch reflex in healthy humans, in Society for Neuroscience Abstracts. San Diego, CA: Society for Neuroscience Abstracts; 2013.
Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013;7, CD006185.
Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.
Mrachacz-Kersting N, Sinkjær T. Reflex and non-reflex torque responses to stretch of the human knee extensors. Exp Brain Res. 2003;151(1):72–81.
Sinkjær T. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man. Acta Neurol Scand Suppl. 1997;170:1–28.
Marsden CD, Merton PA, Morton HB. Stretch reflex and servo action in a variety of human muscles. J Physiol. 1976;259(2):531–60.
Marsden CD, Merton PA, Morton HB. Servo action and stretch reflex in human muscle and its apparent dependence on peripheral sensation. J Physiol. 1971;216(1):21P–2P.
Thompson AK, Wolpaw JR. Targeted neuroplasticity for rehabilitation. Prog Brain Res. 2015;218:157–72.
Pierrot-Deseilligny E, Burke D. The circuitry of the human spinal cord: Its role in motor control and movement disorders. Cambridge: Cambridge University Press; 2005.
Marsden CD, Rothwell JC, Day BL. Long-latency automatic responses to muscle stretch in man: origin and function. Adv Neurol. 1983;39:509–39.
Mrachacz-Kersting N, Grey MJ, Sinkjaer T. Evidence for a supraspinal contribution to the human quadriceps long-latency stretch reflex. Exp Brain Res. 2006;168(4):529–40.
Matthews PB. Observations on the automatic compensation of reflex gain on varying the pre-existing level of motor discharge in man. J Physiol. 1986;374:73–90.
Grey MJ, Ladouceur M, Andersen JB, Nielsen JB, Sinkjaer T. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. J Physiol. 2001;534(Pt 3):925–33.
van Doornik J, Masakado Y, Sinkjaer T, Nielsen JB. The suppression of the long-latency stretch reflex in the human tibialis anterior muscle by transcranial magnetic stimulation. Exp Brain Res. 2004;157(3):403–6.
Capaday C, Forget R, Fraser R, Lamarre Y. Evidence for a contribution of the motor cortex to the long-latency stretch reflex of the human thumb. J Physiol. 1991;440:243–55.
Petersen N, Christensen LO, Morita H, Sinkjaer T, Nilesen JB. Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol. 1998;512(Pt 1):267–76.
Christensen LO, Andersen JB, Sinkjaer T, Nielsen J. Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. J Physiol. 2001;531(Pt 2):545–57.
Andersen JB, Sinkjær T. Mobile ankle and knee perturbator. IEEE Trans Biomed Eng. 2003;50(10):1208–11.
Mrachacz-Kersting N, Lavoie BA, Andersen JB, Sinkjaer T. Characterisation of the quadriceps stretch reflex during the transition from swing to stance phase of human walking. Exp Brain Res. 2004;159(1):108–22.
Sinkjær T, Andersen JB, Larsen B. Soleus stretch reflex modulation during gait in humans. J Neurophysiol. 1996;76(2):1112–20.
Sinkjær T, Andersen JB, Nielsen JF, Hansen HJ. Soleus long-latency stretch reflexes during walking in healthy and spastic humans. Clin Neurophysiol. 1999;110(5):951–9.
Tucker MR, Moser A, Lambercy O, Sulzer J, Gassert R. Design of a wearable perturbator for human knee impedance estimation during gait. IEEE Int Conf Rehabil Robot. 2013;2013:1–6.
Field-Fote EC, Dietz V. Single joint perturbation during gait: preserved compensatory response pattern in spinal cord injured subjects. Clin Neurophysiol. 2007;118(7):1607–16.
Mirbagheri MM, Alibiglou L, Thajchayapong M, Rymer WZ. Muscle and reflex changes with varying joint angle in hemiparetic stroke. J Neuroeng Rehabil. 2008;5:6.
de Gooijer-van de Groep KL, de Vulgt E, de Groot JH, van der Heijden-Maessen HCM, Wielheesen DHM, van Wijlen-Hempel RMS et al. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil. 2013;10:81.