Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Thuret S, Moon LD, Gage FH: Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006, 7: 628-643.
Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M: L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci. 2004, 24: 7837-7842. 10.1523/JNEUROSCI.2420-04.2004.
Slack JM, Lin G, Chen Y: TheXenopustadpole: a new model for regeneration research. Cell Mol Life Sci. 2008, 65: 54-63. 10.1007/s00018-007-7431-1.
Tanaka EM, Ferretti P: Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci. 2009, 10: 713-723. 10.1038/nrn2707.
Tseng AS, Levin M: Tail regeneration inXenopus laevisas a model for understanding tissue repair. J Dent Res. 2008, 87: 806-816. 10.1177/154405910808700909.
Ferretti P, Zhang F, O’Neill P: Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev Dyn. 2003, 226: 245-256. 10.1002/dvdy.10226.
Filoni S, Bosco L, Cioni C: Reconstitution of the spinal cord after ablation in larvalXenopus laevis. Acta Embryol Morphol Exp. 1984, 5: 109-129.
Chernoff EA, Stocum DL, Nye HL, Cameron JA: Urodele spinal cord regeneration and related processes. Dev Dyn. 2003, 226: 295-307. 10.1002/dvdy.10240.
Forehand CJ, Farel PB: Anatomical and behavioral recovery from the effects of spinal cord transection: dependence on metamorphosis in anuran larvae. J Neurosci. 1982, 2: 654-652.
Beattie MS, Bresnahan JC, Lopate G: Metamorphosis alters the response to spinal cord transection inXenopus laevisfrogs. J Neurobiol. 1990, 21: 1108-1122. 10.1002/neu.480210714.
Gargioli C, Slack JM: Cell lineage tracing duringXenopustail regeneration. Development. 2004, 131: 2669-2679. 10.1242/dev.01155.
Chen Y, Lin G, Slack JM: Control of muscle regeneration in theXenopustadpole tail by Pax7. Development. 2006, 133: 2303-2313. 10.1242/dev.02397.
Lin G, Chen Y, Slack JM: Regeneration of neural crest derivatives in theXenopustadpole tail. BMC Dev Biol. 2007, 7: 56-10.1186/1471-213X-7-56.
McHedlishvili L, Epperlein HH, Telzerow A, Tanaka EM: A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development. 2007, 134: 2083-2093. 10.1242/dev.02852.
Michel ME, Reier PJ: Axonal-ependymal associations during early regeneration of the transected spinal cord inXenopus laevistadpoles. J Neurocytol. 1979, 8: 529-548. 10.1007/BF01208508.
Benraiss A, Arsanto JP, Coulon J, Thouveny Y: Neurogenesis during caudal spinal cord regeneration in adult newts. Dev Genes Evol. 1999, 209: 363-369. 10.1007/s004270050265.
Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R: Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003, 17: 126-140. 10.1101/gad.224503.
Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, DeBiasi S, Nicolis SK: Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development. 2004, 131: 3805-3819. 10.1242/dev.01204.
Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi AL, Lovell-Badge R, Ottolenghi S, Nicolis SK: Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development. 2000, 127: 2367-2382.
Kishi M, Mizuseki K, Sasai N, Yamazaki H, Shiota K, Nakanishi S, Sasai Y: Requirement of Sox2-mediated signaling for differentiation of earlyXenopusneuroectoderm. Development. 2000, 127: 791-800.
Bylund M, Andersson E, Novitch BG, Muhr J: Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci. 2003, 6: 1162-1168. 10.1038/nn1131.
Graham V, Khudyakov J, Ellis P, Pevny L: SOX2 functions to maintain neural progenitor identity. Neuron. 2003, 39: 749-765. 10.1016/S0896-6273(03)00497-5.
Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH: In vivofate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell. 2007, 1: 515-528. 10.1016/j.stem.2007.09.002.
Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis SK: Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci. 2009, 12: 1248-1256. 10.1038/nn.2397.
Ferretti P, Zhang F, Santos-Ruiz L, Clarke JD: FGF signalling and blastema growth during amphibian tail regeneration. Int J Dev Biol. 2001, 45: S127-S128.
Walder S, Zhang F, Ferretti P: Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord. Dev Genes Evol. 2003, 213: 625-630. 10.1007/s00427-003-0364-2.
Grotmol S, Nordvik K, Kryvi H, Totland GK: A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies. J Anat. 2005, 206: 427-436. 10.1111/j.1469-7580.2005.00408.x.
Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB: A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in theXenopusretina. Development. 2009, 136: 3289-3299. 10.1242/dev.040451.
Sims RT: Transection of the spinal cord in developingXenopus laevis. J Embryol Exp Morphol. 1962, 10: 115-126.
Taniguchi Y, Sugiura T, Tazaki A, Watanabe K, Mochii M: Spinal cord is required for proper regeneration of the tail inXenopustadpoles. Dev Growth Differ. 2008, 50: 109-120. 10.1111/j.1440-169X.2007.00981.x.
Polezhaev LV: Loss and Restoration of Regenerative Capacity in Tissue and Organs of Animals. 1972, Harvard University Press, Cambridge, MA, 75-79.
Holtzer SW: The inductive activity of the spinal cord in urodele tail regeneration. J Morphology. 1956, 99: 1-39. 10.1002/jmor.1050990102.
Poss KD: Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet. 2010, 11: 710-722.
Mondia JP, Levin M, Omenetto FG, Orendorff RD, Branch MR, Adams DS: Long-distance signals are required for morphogenesis of the regeneratingXenopustadpole tail, as shown by femtosecond-laser ablation. PLoS One. 2011, 6: e24953-10.1371/journal.pone.0024953.
Drummond-Barbosa D: Stem cells, their niches and the systemic environment: an aging network. Genetics. 2008, 180: 1787-1797. 10.1534/genetics.108.098244.
Yoshino J, Tochinai S: Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation inXenopus laevis. Dev Growth Differ. 2004, 46: 523-534. 10.1111/j.1440-169x.2004.00767.x.
Reimer MM, Sorensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T: Motor neuron regeneration in adult zebrafish. J Neurosci. 2008, 28: 8510-8516. 10.1523/JNEUROSCI.1189-08.2008.
Sirbulescu RF, Ilies I, Zupanc GK: Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish,Apteronotus leptorhynchus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009, 195: 699-714. 10.1007/s00359-009-0445-4.
Zupanc GK, Wellbrock UM, Sirbulescu RF, Rajendran RS: Generation, long-term persistence, and neuronal differentiation of cells with nuclear aberrations in the adult zebrafish brain. Neuroscience. 2009, 159: 1338-1348. 10.1016/j.neuroscience.2009.02.014.
Dervan AG, Roberts BL: Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol. 2003, 458: 293-306. 10.1002/cne.10594.
Zhang F, Ferretti P, Clarke JD: Recruitment of postmitotic neurons into the regenerating spinal cord of urodeles. Dev Dyn. 2003, 226: 341-348. 10.1002/dvdy.10230.
Berg DA, Kirkham M, Beljajeva A, Knapp D, Habermann B, Ryge J, Tanaka EM, Simon A: Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development. 2010, 137: 4127-4134. 10.1242/dev.055541.
Guo Y, Ma L, Cristofanilli M, Hart RP, Hao A, Schachner M: Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience. 2011, 172: 329-341.
Schlosser G, Koyano-Nakagawa N, Kintner C: Thyroid hormone promotes neurogenesis in theXenopusspinal cord. Dev Dyn. 2002, 225: 485-498. 10.1002/dvdy.10179.
Egar M, Singer M: The role of ependyma in spinal cord regeneration in the urodele, Triturus. Exp Neurol. 1972, 37: 422-430. 10.1016/0014-4886(72)90085-4.
Nordlander RH, Singer M: The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J Comp Neurol. 1978, 180: 349-374. 10.1002/cne.901800211.
McDonald D, Cheng C, Chen Y, Zochodne D: Early events of peripheral nerve regeneration. Neuron Glia Biol. 2006, 2: 139-147.
Le N, Nagarajan R, Wang JY, Araki T, Schmidt RE, Milbrandt J: Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Natl Acad Sci U S A. 2005, 102: 2596-2601. 10.1073/pnas.0407836102.
Parrinello S, Napoli I, Ribeiro S, Digby PW, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH, Lloyd AC: EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell. 2010, 143: 145-155. 10.1016/j.cell.2010.08.039.
Mothe AJ, Kulbatski I, van Bendegem RL, Lee L, Kobayashi E, Keating A, Tator CH: Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem. 2005, 53: 1215-1226. 10.1369/jhc.5A6639.2005.
Horky LL, Galimi F, Gage FH, Horner PJ: Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006, 498: 525-538. 10.1002/cne.21065.
Ke Y, Chi L, Xu R, Luo C, Gozal D, Liu R: Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells. 2006, 24: 1011-1019. 10.1634/stemcells.2005-0249.
Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J: Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008, 6: e182-10.1371/journal.pbio.0060182.
Shihabuddin LS, Horner PJ, Ray J, Gage FH: Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci. 2000, 20: 8727-8735.
Sive HL, Grainger RM, Harland RM: Early Development of Xenopus laevis: A Laboratory Manual. 2000, Cold Spring Harbor Laborarory Press, Cold Spring Harbor, NY, USA
Beck CW, Christen B, Slack JM: Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell. 2003, 5: 429-439. 10.1016/S1534-5807(03)00233-8.
Contreras EG, Gaete M, Sanchez N, Carrasco H, Larrain J: Early requirement of Hyaluronan for tail regeneration inXenopustadpoles. Development. 2009, 136: 2987-2996. 10.1242/dev.035501.
Moreno M, Munoz R, Aroca F, Labarca M, Brandan E, Larrain J: Biglycan is a new extracellular component of the Chordin-BMP4 signaling pathway. EMBO J. 2005, 24: 1397-1405. 10.1038/sj.emboj.7600615.
Sugiura T, Taniguchi Y, Tazaki A, Ueno N, Watanabe K, Mochii M: Differential gene expression between the embryonic tail bud and regenerating larval tail inXenopus laevis. Dev Growth Differ. 2004, 46: 97-105. 10.1111/j.1440-169X.2004.00727.x.
Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM: Endodermal nodal-related signals and mesoderm induction inXenopus. Development. 2000, 127: 1173-1183.