SpiCoDyn: Một công cụ phân tích động lực học và kết nối của mạng nơ-ron từ các ghi nhận tín hiệu spike đa vị trí

Springer Science and Business Media LLC - Tập 16 - Trang 15-30 - 2017
Vito Paolo Pastore1, Aleksandar Godjoski1,2, Sergio Martinoia1,3, Paolo Massobrio1
1Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Genova, Italy
2Brain GmbH, Wädenswil, Switzerland
3Institute of Biophysics, National Research Council (CNR), Genova, Italy

Tóm tắt

Chúng tôi đã triển khai một phần mềm mã nguồn mở tự động và hiệu quả để phân tích các tín hiệu spike nơ-ron ở nhiều vị trí. Gói phần mềm, được gọi là SpiCoDyn, đã được phát triển như một ứng dụng GUI độc lập trên Windows, sử dụng ngôn ngữ lập trình C# với Microsoft Visual Studio dựa trên môi trường phát triển .NET framework 4.5. Các định dạng dữ liệu đầu vào được chấp nhận bao gồm HDF5, level 5 MAT và các tệp văn bản, chứa dữ liệu ghi nhận hoặc dữ liệu tín hiệu spike thời gian được sinh ra. SpiCoDyn xử lý các tín hiệu điện sinh lý như vậy với trọng tâm là: động lực học spike và burst, cùng với phân tích kết nối hiệu quả chức năng. Đặc biệt, để suy luận kết nối mạng, một phương pháp mới về nhiệt độ chuyển giao đã được trình bày, xử lý nhiều độ trễ thời gian (mở rộng tạm thời) và với nhiều mẫu nhị phân (mở rộng bậc cao). SpiCoDyn được thiết kế đặc biệt để xử lý dữ liệu đến từ các thiết lập Multi-Electrode Arrays khác nhau, đảm bảo, trong những trường hợp cụ thể đó, quá trình xử lý tự động. Việc triển khai tối ưu các thuật toán Nhiệt độ Chuyển giao Trễ và Nhiệt độ Chuyển giao Bậc Cao cho phép thực hiện phân tích chính xác và nhanh chóng trên nhiều chuỗi spike từ hàng ngàn điện cực.

Từ khóa

#phân tích tín hiệu spike #động lực học nơ-ron #kết nối hiệu quả #nhiệt độ chuyển giao #Multi-Electrode Arrays

Tài liệu tham khảo

Bal-Price, A. K., Hogberg, H. T., Buzanska, L., Lenas, P., van Vliet, E., & Hartung, T. (2010). In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints. Neurotoxicology, 31(5), 545–554. https://doi.org/10.1016/j.neuro.2009.11.006. Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512. Bennett, K., & Robertson, J. (2011). The impact of the data archiving file format on scientific computing and performance of image processing algorithms in MATLAB using large HDF5 and XML multimodal and hyperspectral data sets, MATLAB - A ubiquitous tool for the practical engineer. In C. Ionescu (Ed.), InTech. https://doi.org/10.5772/19410. Available from: https://www.intechopen.com/books/matlab-a-ubiquitous-tool-for-the-practical-engineer/the-impact-of-the-data-archiving-file-format-on-scientific-computing-and-performance-of-image-proces. Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., et al. (2009). Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on a Chip, 9, 2644–2651. Bologna, L. L., Pasquale, V., Garofalo, M., Gandolfo, M., Baljon, P. L., Maccione, A., et al. (2010). Investigating neuronal activity by SPYCODE multi-channel data analyzer. Neural Networks, 23(6), 685–697. https://doi.org/10.1016/j.neunet.2010.05.002. Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nat Neurosci, 7(5), 446–451. Chang, E. F. (2015). Towards large-scale, human-based, mesoscopic neurotechnologies. Neuron, 86(1), 68–78. https://doi.org/10.1016/j.neuron.2015.03.037. Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., & van Pelt, J. (2005). Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing, 65-66, 653–662. Chiappalone, M., Bove, M., Vato, A., Tedesco, M., & Martinoia, S. (2006). Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Research, 1093, 41–53. Egert, U., Knott, T., Schwarz, C., Nawrot, M., Brandt, A., Rotter, S., et al. (2002). MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB. Journal of Neuroscience Methods, 117, 33–42. Eichler, M., Dahlhaus, R., & Sandkuhler, J. (2003). Partial correlation analysis for the identification of synaptic connections. Biological Cybernetics, 89, 289–302. Eversmann, B., Jenker, M., Hofmann, F., Paulus, C., Brederlow, R., Holzapfl, B., et al. (2003). A 128 x 128 CMOS biosensor array for extracellular recording of neural activity. IEEE Journal of Solid State Circuits, 38, 2306–2317. Eytan, D., Minerbi, A., Ziv, N., & Marom, S. (2004). Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons. Journal of Neurophysiology, 92(3), 1817–1824. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874. Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One, 4(8), e6482. https://doi.org/10.1371/journal.pone.0006482. Grace, A. A., & Bunney, B. S. (1984). The control of firing pattern in nigral dopamine neurons: burst firing. Journal of Neuroscience, 4(11), 2877. HDFGroup (2013). Hierarchical data format http://www.hdfgroup.org/. Hogberg, H. T., Sobanski, T., Novellino, A., Whelan, M., Weiss, D. G., & Bal-Price, A. K. (2011). Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: Evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology, 32(1), 158–168. https://doi.org/10.1016/j.neuro.2010.10.007. Humphries, M. D., & Gurney, K. (2008). Network 'Small-World-Ness': a quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051. Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model. PLoS One, 6(11), e27431. https://doi.org/10.1371/journal.pone.0027431. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572. Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics of neuronal groups. Cerebral Cortex, 14, 933–944. Jones, I. L., Livi, P., Lewandowska, M. K., Fiscella, M., Roscic, B., & Hierlemann, A. (2011). The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Analytical Bioanalytical Chemistry, 399(7), 2313–2329. https://doi.org/10.1007/s00216-010-3968-1. Kapucu, F. E., Tanskanen, J., Mikkonen, J., Ylä-Outinen, L., Narkilahti, S., & Hyttinen, J. (2012). Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics. (Methods). Frontiers in Computational Neuroscience, 6(38). https://doi.org/10.3389/fncom.2012.00038. Lungarella, M., Pitti, A., & Kuniyoshi, Y. (2007). Information transfer at multiple scales. Phys Rev E, 76, 0561171–05611710. Maccione, A., Gandolfo, M., Massobrio, P., Novellino, A., Martinoia, S., & Chiappalone, M. (2009). A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. Journal of Neuroscience Methods, 177(1), 241–249. Maccione, A., Gandolfo, M., Zordan, S., Amin, H., Di Marco, S., Nieus, T., et al. (2015). Microelectronics, bioinformatics and neurocomputation for massive neuronal recordings in brain circuits with large scale multielectrode array probes. Brain Research Bulletin, 119(Part B), 118–126. https://doi.org/10.1016/j.brainresbull.2015.07.008. Mahmud, M., & Vassanelli, S. (2016). Processing and analysis of multichannel extracellular neuronal signals: State-of-the-Art and Challenges. (Review). Frontiers in Neuroscience, 10, 248. https://doi.org/10.3389/fnins.2016.00248. Mahmud, M., Pulizzi, R., Vasilaki, E., & Giugliano, M. (2014). QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays. Frontiers in Neuroinformatics, 8, 26. https://doi.org/10.3389/fninf.2014.00026. Makarov, V. A., Panetsos, F., & de Feo, O. (2005). A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. Journal of Neuroscience Methods, 144(2), 265–279. https://doi.org/10.1016/j.jneumeth.2004.11.013. Massobrio, P., Tessadori, J., Chiappalone, M., & Ghirardi, M. (2015). In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using Multi-Electrode Arrays (MEAs). Neural Plasticity, 2015. https://doi.org/10.1155/2015/196195. Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2(5), e439. https://doi.org/10.1371/journal.pone.0000439. Meier, R., Egert, U., Aertsen, A., & Nawrot, M. P. (2008). FIND-a unified framework for neuronal data analysis. Neural Networks, 21, 1085–1093. Muller, J., Ballini, M., Livi, P., Chen, Y., Radivojevic, M., Shadmani, A., et al. (2015). High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab on a Chip, 15(13), 2767–2780. https://doi.org/10.1039/c5lc00133a. Newman, M. E. J., Moore, C., & Watts, D. J. (2000). Mean-field solution of the small-world network model. Physical Review Letters, 84, 3201–3204. Overbey, L. A., & Todd, M. D. (2009). Dynamic system change detection using a modification of the transfer entropy. Journal of Sound and Vibration, 322(1–2), 438–453. https://doi.org/10.1016/j.jsv.2008.11.025. Pasquale, V., Martinoia, S., & Chiappalone, M. (2009). A self-adapting approach for the detection of bursts and network bursts in neuronal cultures. Journal of Computational Neuroscience, 29(1–2), 213–229. https://doi.org/10.1007/s10827-009-0175-1. Pastore, V. P., Poli, D., Godjoski, A., Martinoia, S., & Massobrio, P. (2016). ToolConnect: a functional connectivity toolbox for in vitro networks. Frontiers in Neuroinformatics, 10(13). https://doi.org/10.3389/fninf.2016.00013. Poli, D., Pastore, V. P., & Massobrio, P. (2015). Functional connectivity in in vitro neuronal assemblies. Frontiers in Neural Circuits, 9(57). https://doi.org/10.3389/fncir.2015.00057. Poli, D., Pastore, V. P., Martinoia, S., & Massobrio, P. (2016). From functional to structural connectivity using partial correlation in neuronal assemblies. Journal of Neural Engineering, 13(2), 026023. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. (Research Support, Non-U.S. Gov't). NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003. Schreiber, T. (2000). Measuring Information Transfer. Physical Review Letters, 85(2), 461–464. Schröder, S., Cecchetto, C., Keil, S., Mahmud, M., Brose, E., Özgü, D., et al. (2015). CMOS-compatible purely capacitive interfaces for high-density in-vivo recording from neural tissue. In 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), 22–24 Oct. 2015 (pp. 1–4). https://doi.org/10.1109/BioCAS.2015.7348358. Shulyzki, R., Abdelhalim, K., Bagheri, A., Salam, M. T., Florez, C. M., Velazquez, J. L. P., et al. (2015). 320-Channel Active Probe for High-Resolution Neuromonitoring and Responsive Neurostimulation. IEEE Transactions on Biomedical Circuits and Systems, 9(1), 34–49. https://doi.org/10.1109/TBCAS.2014.2312552. Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926. Tam, D. C. (2002). An alternate burst analysis for detecting intra-burst firings based on inter-burst periods. Neurocomputing, 44-46, 1155–1159. Van Bussel, F., Kriener, B., & Timme, M. (2011). Inferring synaptic connectivity from spatio-temporal spike patterns. (Original Research). Frontiers in Computational Neuroscience, 5, 3. https://doi.org/10.3389/fncom.2011.00003. van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends Cognitive Science, 17(12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012. Vassanelli, S. (2014). Multielectrode and Multitransistor Arrays for In Vivo Recording. In M. De Vittorio, L. Martiradonna, & J. Assad (Eds.), Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing (pp. 239–267). New York: Springer New York. Vato, A., Bonzano, L., Chiappalone, M., Cicero, S., Morabito, F., Novellino, A., et al. (2004). Spike manager: a new tool for spontaneous and evoked neuronal networks activity characterization. Neurocomputing, 58(60), 1153–1161. Viswam, V., Dragas, J., Muller, J., & Hierlemann, A. (2016). Multi-functional microelectrode array system featuring 59,760 electrodes, 2048 electrophysiology channels, impedance and neurotransmitter measurement units. In IEEE International Solid-State Circuits Conference, San Francisco (US), 2016 (pp 394–396): IEEE. doi:https://doi.org/10.1109/ISSCC.2016.7418073. Wagenaar, D., DeMarse, T. B., & Potter, S. M. (2005). MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. In 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, 16-19 March 2005: IEEE. doi:https://doi.org/10.1109/CNE.2005.1419673. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393, 440–442. Yeung, M. K. S., Tegnér, J., & Collins, J. J. (2002). Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings National Academy Science, 99(9), 6163–6168. https://doi.org/10.1073/pnas.092576199. Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Review Neuroscience, 16, 487–497.