Spectrum and global bifurcation results for nonlinear second-order problem on all of $${\mathbb {R}}$$

Springer Science and Business Media LLC - Tập 14 - Trang 1-20 - 2022
Ruyun Ma1,2, Yan Zhu1, Yali Zhang1, Lijuan Yang1
1College of Mathematics and Statistics, Northwest Normal University, Lanzhou, People’s Republic of China
2School of Mathematics and Statistics, Xidian University, Xi’an, People’s Republic of China

Tóm tắt

We investigate the following second-order problem $$\begin{aligned} \left\{ \begin{array}{ll} -u''(t) +a(t)u(t)=\lambda b(t)f(u(t)), \ \ \ \ t\in {\mathbb {R}}, \qquad \qquad \qquad \qquad (P) \\ \underset{|t|\rightarrow \infty }{\lim }u(t)=0, \end{array} \right. \end{aligned}$$ where $$\lambda >0$$ is a parameter, $$a \in C({\mathbb {R}}, (0,\infty )),~b\in C({\mathbb {R}}, [0,\infty ))$$ such that $$\underset{|t|\rightarrow \infty }{\lim }\frac{b(t)}{a(t)} = 0, ~f:{\mathbb {R}}\rightarrow {\mathbb {R}}$$ is a continuous function with $$sf(s)> 0$$ for $$s\ne 0$$ . For the linear case, i.e., $$f(u)=u$$ , we investigate the existence of principal eigenvalue of (P). For the nonlinear case, depending on the behavior of f near 0 and $$\infty$$ , we obtain asymptotic behavior and the existence of homoclinic solutions of (P). The proof of our main results is based upon bifurcation technique.

Tài liệu tham khảo

Afrouzi, G.A.: On the continuity of principal eigenvalues for boundary value problems with indefinite weight function with respect to radius of balls in ${\mathbb{R} }^n$. Int. J. Math. Math. Sci. 29(5), 279–283 (2002) Bonheure, D., Torres, P.J.: Bounded and homoclinic-like solutions of a second-order singular differential equation. Bull. Lond. Math. Soc. 44(1), 47–54 (2012) Brown, K.J., Cosner, C., Fleckinger, J.: Principal eigenvalues for problems with indefinite weight function on ${\mathbb{R} }^n$. Proc. Am. Math. Soc. 109(1), 147–155 (1990) Brown, K.J., Lin, S.S.: On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function. J. Math. Anal. Appl. 75, 112–120 (1980) Brown, K.J., Stavrakakis, N.M.: Sub and supersolutions for semilinear elliptic equations on all of ${\mathbb{R} }^n$. Differ. Integr. Equ. 7(5), 1215–1226 (1994) Brown, K.J., Stavrakakis, N.M.: On the construction of super and subsolutions for elliptic equations on all of ${\mathbb{R} }^n$. Nonlinear Anal. 32(1), 87–95 (1998) Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Mathematics in Science and Engineering, vol. 104. Academic Press, New York, London (1973) Dai, G., Yao, J., Li, F.: Spectrum and bifurcation for semilinear elliptic problems in ${\mathbb{R} }^n$. J. Differ. Equ. 263, 5939–5967 (2017) Dancer, E.N.: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. J. 23, 1069–1076 (1974) Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985) Edelson, A.L., Rumbos, A.J.: Linear and semilinear eigenvalue problems in ${\mathbb{R} }^n$. Commun. Partial Differ. Equ. 18(1–2), 215–240 (1993) Ma, R., Gao, H., Chen, T.: Radial positive solutions for Neumann problems without growth restrictions. Complex Var. Elliptic Equ. 62, 848–861 (2017) Ma, R., Xu, J., Han, X.: Global structure of positive solutions for superlinear second-order periodic boundary value problems. Appl. Math. Comput. 218, 5982–5988 (2012) Minhós, F., Carrasco, H.: Existence of homoclinic solutions for nonlinear second-order problems. Mediterr. J. Math. 13, 3849–3861 (2016) Motreanu, D., Motreanu, V., Papageorgiou, N.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014) Przeradzki, B.: The existence of bounded solutions for differential equations in Hilbert spaces. Ann. Polon. Math. 56(2), 103–121 (1992) Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971) Torres, P.J.: Guided waves in a multi-layered optical structure. Nonlinearity 19, 2103–2113 (2006)