Speckle-Tracking Echocardiographic Strain Analysis Reliably Estimates Degree of Acute LV Unloading During Mechanical LV Support by Impella

Journal of Cardiovascular Translational Research - Tập 12 - Trang 135-141 - 2018
Nadjib Hammoudi1,2, Shin Watanabe1, Olympia Bikou1, Alexandre Ceccaldi2, Kenneth Fish1, Kelly P. Yamada1, Satoshi Miyashita1, Guillaume Lebreton3, Roger J. Hajjar1, Kiyotake Ishikawa1
1Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, USA
2Institut de Cardiologie (AP-HP), Centre Hospitalier Universitaire Pitié-Salpêtrière, Institute of Cardiometabolism and Nutrition (ICAN), ACTION Study Group, INSERM UMRS 1166, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
3Institut de Cardiologie (AP-HP), Thoracic and Cardiovascular Surgery Department, Sorbonne Universités, UPMC Univ Paris 06, Paris, France

Tóm tắt

Non-invasive means of evaluating appropriate cardiac unloading remain to be established. We hypothesized that myocardial deformation assessed by echocardiographic speckle-tracking strain analysis can reliably estimate the degree of left ventricular (LV) unloading under mechanical circulatory support. A total of 24 Yorkshire pigs underwent Impella-mediated acute LV unloading 1–2 weeks after myocardial infarction (MI). Echocardiographic and invasive pressure-volume measurements were used to evaluate the degree of LV unloading. Pressure-volume analysis before and after LV unloading exhibited a significant decrease in stroke work (3399 ± 1440 to 1244 ± 659 mmHg ml, p < 0.001), suggesting reduced external cardiac work. Both longitudinal strain (− 14.6 ± 4.1% to − 10.6 ± 2.3%, p < 0.001) and circumferential strain (− 18.7 ± 6.1% to − 9.3 ± 3.5%, p < 0.001) decreased after LV unloading, and there were linear relationships between stroke work and echocardiographic longitudinal (r = − 0.61, p < 0.001) as well as circumferential strains (r = − 0.75, p < 0.001). Echocardiographic LV strain analysis offers a non-invasive assessment of LV unloading in subacute MI.

Tài liệu tham khảo

Kuchibhotla, S., Esposito, M. L., Breton, C., Pedicini, R., Mullin, A., O'Kelly, R., et al. (2017). Acute biventricular mechanical circulatory support for cardiogenic shock. Journal of the American Heart Association, 6(10), doi:ARTN e006670. https://doi.org/10.1161/JAHA.117.006670. Burzotta, F., Trani, C., Doshi, S. N., Townend, J., van Geuns, R. J., Hunziker, P., et al. (2015). Impella ventricular support in clinical practice: collaborative viewpoint from a European expert user group. International Journal of Cardiology, 201, 684–691. https://doi.org/10.1016/j.ijcard.2015.07.065. Burkhoff, D., & Naidu, S. S. (2012). The science behind percutaneous hemodynamic support: a review and comparison of support strategies. Catheterization and Cardiovascular Interventions, 80(5), 816–829. https://doi.org/10.1002/ccd.24421. Meyns, B., Stolinski, J., Leunens, V., Verbeken, E., & Flameng, W. (2003). Left ventricular support by catheter-mounted axial flow pump reduces infarct size. Journal of the American College of Cardiology, 41(7), 1087–1095. https://doi.org/10.1016/S0735-1097(03)00084-6. Kapur, N. K., Qiao, X. Y., Paruchuri, V., Morine, K. J., Syed, W., Dow, S., et al. (2015). Mechanical pre-conditioning with acute circulatory support before reperfusion limits infarct size in acute myocardial infarction. Jacc-Heart Failure, 3(11), 873–882. https://doi.org/10.1016/j.jchf.2015.06.010. Soucy, K. G., Bartoli, C. R., Phillips, D., Giridharan, G. A., Sobieski, M. A., Wead, W. B., et al. (2017). Continuous-flow left ventricular assist device support improves myocardial supply: demand in chronic heart failure. Annals of Biomedical Engineering, 45(6), 1475–1486. https://doi.org/10.1007/s10439-017-1804-x. Collier, P., Phelan, D., & Klein, A. (2017). A test in context: myocardial strain measured by speckle-tracking echocardiography. Journal of the American College of Cardiology, 69(8), 1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012. Prastaro, M., Pirozzi, E., Gaibazzi, N., Paolillo, S., Santoro, C., Savarese, G., et al. (2017). Expert Review on the Prognostic Role of Echocardiography after Acute Myocardial Infarction. Journal of the American Society of Echocardiography, 30(5), 431. https://doi.org/10.1016/j.echo.2017.01.020. Ishikawa, K., Aguero, J., Tilemann, L., Ladage, D., Hammoudi, N., Kawase, Y., et al. (2014). Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. American Journal of Physiology. Heart and Circulatory Physiology, 307(10), H1478–H1486. https://doi.org/10.1152/ajpheart.00797.2013. Watanabe, S., Fish, K., Kovacic, J. C., Bikou, O., Leonardson, L., Nomoto, K., et al. (2018). Left ventricular unloading using an Impella CP improves coronary flow and infarct zone perfusion in ischemic heart failure. Journal of the American Heart Association, 7(6). https://doi.org/10.1161/JAHA.117.006462. Ishikawa, K., Aguero, J., Oh, J. G., Hammoudi, N., Fish, L. A., Leonardson, L., et al. (2015). Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. Journal of the American Heart Association, 4(5), doi:ARTN e001925. https://doi.org/10.1161/JAHA.115.001925. Addetia, K., Uriel, N., Maffessanti, F., Sayer, G., Adatya, S., Kim, G. H., et al. (2017). 3D morphological changes in LV and RV during LVAD ramp studies. JACC Cardiovasc Imaging, doi:10.1016/j.jcmg.2016.12.019. Sun, X. T., Li, J., Zhao, W. P., Lu, S. Y., Guo, C. F., Lai, H., et al. (2016). Early assistance with left ventricular assist device limits left ventricular remodeling after acute myocardial infarction in a swine model. Artificial Organs, 40(3), 243–251. https://doi.org/10.1111/aor.12541. Perry, P., David, E., Atkins, B., & Raff, G. (2017). Novel application of a percutaneous left ventricular assist device as a bridge to transplant in a paediatric patient with severe heart failure due to viral myocarditis. Interactive Cardiovascular and Thoracic Surgery, 24(3), 474–476. https://doi.org/10.1093/icvts/ivw387. Potter, E., & Marwick, T. H. (2018). Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC. Cardiovascular Imaging, 11(2 Pt 1), 260–274. https://doi.org/10.1016/j.jcmg.2017.11.017. Smiseth, O. A., Torp, H., Opdahl, A., Haugaa, K. H., & Urheim, S. (2016). Myocardial strain imaging: how useful is it in clinical decision making? European Heart Journal, 37(15), 1196–1207. https://doi.org/10.1093/eurheartj/ehv529. Burkhoff, D., & Naidu, S. S. (2012). The science behind percutaneous hemodynamic support: a review and comparison of support strategies. Catheterization and Cardiovascular Interventions, 80(5), 816–829. https://doi.org/10.1002/ccd.24421. Burns, A. T., La Gerche, A., D'Hooge, J., MacIsaac, A. I., & Prior, D. L. (2010). Left ventricular strain and strain rate: characterization of the effect of load in human subjects. European Journal of Echocardiography, 11(3), 283–289. https://doi.org/10.1093/ejechocard/jep214. Burkhoff, D., Sayer, G., Doshi, D., & Uriel, N. (2015). Hemodynamics of mechanical circulatory support. Journal of the American College of Cardiology, 66(23), 2664–2674. Suga, H. (1990). Cardiac mechanics and energetics—from Emax to PVA. Frontiers of Medical and Biological Engineering, 2(1), 3–22. Ishikawa, K., Aguero, J., Oh, J. G., Hammoudi, N., Fish, L. A., Leonardson, L., et al. (2015). Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. Journal of the American Heart Association, 4(5). https://doi.org/10.1161/JAHA.115.001925. Ishikawa, K., Watanabe, S., Hammoudi, N., Aguero, J., Bikou, O., Fish, K., et al. (2018). Reduced longitudinal contraction is associated with ischemic mitral regurgitation after posterior MI. American Journal of Physiology. Heart and Circulatory Physiology, 314(2), H322–H329. https://doi.org/10.1152/ajpheart.00546.2017. Ishikawa, K., Kawase, Y., Ladage, D., Chemaly, E. R., Tilemann, L., Fish, K., et al. (2012). Temporal changes of strain parameters in the progress of chronic ischemia: with comparison to transmural infarction. The International Journal of Cardiovascular Imaging, 28(7), 1671–1681. https://doi.org/10.1007/s10554-012-0010-z.