Specifying and Structuring Mathematical Topics

Stephan Hußmann1, Susanne Prediger1
1Institute for Development and Research in Mathematics Education, TU Dortmund University, Dortmund, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akker, J. van den, Gravemeijer, K., McKenney, S., & Nieveen, N. (Eds.) (2006). Educational design research: the design, development and evaluation. London: Routledge.

Bender, P. (1991). Ausbildung von Grundvorstellungen und Grundverständnissen – ein tragendes didaktisches Konzept für den Mathematikunterricht [Developing basic mental models and basic understandings]. In H. Postel, A. Kirsch, & W. Blum (Eds.), Mathematik lehren und lernen (pp. 48–60). Hannover: Schroedel.

Brandom, R. B. (1994). Making it Explicit. Reasoning, Representing, and Discursive Commitment. Cambridge: Harvard University Press.

Brousseau, G. (1997). The theory of didactical situations in mathematics. Dordrecht: Kluwer.

Bruner, J. (1960). The process of education. Cambridge: Harvard University Press.

Bruner, J. (1999). Some reflections on education research. In E. C. Lagemann, & L. S. Shulman (Eds.), Issues in education research: problems and possibilities (pp. 399–409). San Francisco: Jossey-Bass.

Castillo-Garsow, C. (2012). Continuous quantitative reasoning. In R. Mayes, L. Hattfield, & S. Belbase (Eds.), Quantitative Reasoning: Current state of understanding (pp. 55–73). Laramie: University of Wyoming Press.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

Confrey, J. (1991). The concept of exponential functions: a student’s perspective’. In L. Steffe (Ed.), Epistemological Foundations of Mathematical Experience (pp. 124–159). New York: Springer.

Confrey, J. (1993). Learning to see children’s mathematics: Crucial challenges in constructivist reform. In K. Tobin (Ed.), Constructivist perspectives in science and mathematics (pp. 299–321). Washington: American Association for the Advancement of Science.

Confrey, J. (2006). The evolution of design studies as methodology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 135–152). Cambridge: Cambridge University Press.

Confrey, J., & Lachance, A. (2000). Transformative teaching experiments through conjecture–driven research design. In E. Kelly, & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 231–266). Mahwah: Lawrence Erlbaum.

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2–3), 135–164.

Confrey, J., & Smith, E. (1995). Splitting, Covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86.

Davis, J. D. (2009). Understanding the influence of two mathematics textbooks on prospective secondary teachers’ knowledge. Journal of Mathematics Teacher Education, 12(5), 365–389.

Dewey, J. (1926). Democracy and Education. New York: Macmillan.

Duit, R., Gropengießer, H., & Kattmann, U. (2005). Towards Science education that is relevant for improving practice: The model of educational reconstruction. In H. E. Fischer (Ed.), Developing Standards in Research on Science Education (pp. 1–9). London: Taylor & Francis.

Dubinsky, E., & Harel, G. (1992). The nature of the process conception of function. In G. Harel, & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 85–106). Washington: Mathematical Association of America.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131.

Ellis, A. B., Ozgur, Z., Kulow, T., Williams, C., & Amidon, J. (2012). Quantifying exponential growth: The case of the Jactus. In R. Mayes, & L. Hatfield (Eds.), Quantitative reasoning and mathematical modeling: a driver for STEM integrated education and teaching in context (pp. 93–112). Laramie: University of Wyoming.

Freudenthal, H. (1974). Die Stufen im Lernprozess und die heterogene Lerngruppe im Hinblick auf die Middenschool [The levels in the learning process and the heterogeneous group of learners with respect to the middle school]. Neue Sammlung, 14, 161–172.

Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Kluwer.

Gallin, P., & Ruf, U. (1990). Sprache und Mathematik in der Schule. Auf eigenen Wegen zur Fachkompetenz [Language and mathematics. On individual ways towards mathematical competence]. Seelze: Kallmeyer.

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. v. d. Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research: The design, development and evaluation of programs, processes and products (pp. 17–51). London: Routledge.

Griesel, H. (1971). Die mathematische Analyse als Forschungsmittel in der Didaktik der Mathematik. The mathematical analysis as a means of research in didactics of mathematics. Beiträge zum Mathematikunterricht, 72–81.

Griesel, H. (1974). Überlegungen zur Didaktik der Mathematik als Wissenschaft [Reflections on the didactics of mathematics as scientific discipline]. Zentralblatt für Didaktik der Mathematik, 6, 115–119.

Hefendehl-Hebeker, L. (2002). On aspects of didactically sensitive understanding of mathematics. In H. G. Weigand et al. (Ed.), Developments in mathematics education in German-speaking countries (pp. 20–32). Hildesheim: Franzbecker.

Hefendehl-Hebeker, L. (2016). Subject-matter didactics in German traditions – Early historical developments. Journal für Mathematik-Didaktik. doi: 10.1007/s13138-016-0103-7.

Heuvel-Panhuizen, M. van den (2005). Can scientific research answer the ‘what’ question of mathematics education? Cambridge Journal of Education, 35(1), 35–53.

Heymann, H. W. (1996). Allgemeinbildung und Mathematik. Weinheim: Beltz. Reprinted in English as Heymann, H. W. (2003). Why teach mathematics? A focus on general education. Dordrecht: Springer.

Hiebert, J. (1986). Conceptual and procedural knowledge: The case of mathematics. Hillsdale: Erlbaum.

Hofe, R. vom (1998). On the generation of basic ideas and individual images. In A. Sierpinska, & J. Kilpatrick (Eds.), Mathematics education as a research domain: a search for identity. An ICMI study (vol. 2, pp. 317–331). Dordrecht: Kluwer.

Holland, G. (1974). Geometrie für Lehrer und Studenten [Geometry for teacher and students]. vol. 1. Hannover: Schroedel.

Hußmann, S. (2002). Konstruktivistisches Lernen an intentionalen Problemen. Mathematik unterrichten in einer offenen Lernumgebung [Constructivist learning with intentional problems. Teaching mathematics in open learning environments]. Hildesheim: Franzbecker.

Hußmann, S., & Schacht, F. (2015). Fachdidaktische Entwicklungsforschung in inferentieller Perspektive am Beispiel von Variable und Term [Design Research in an Inferential Perspective, illustrated by variables and algebraic expressions]. Journal für Mathematik-Didaktik, 36(1), 105–134.

Hußmann, S., Thiele, J., Hinz, R., Prediger, S., & Ralle, B. (2013). Gegenstandsorientierte Unterrichtsdesigns entwickeln und erforschen – Fachdidaktische Entwicklungsforschung im Dortmunder Modell [develop and research topic-specific instructional designs]. In M. Komorek, & S. Prediger (Eds.), Der lange Weg zum Unterrichtsdesign: Zur Begründung und Umsetzung genuin fachdidaktischer Forschungs- und Entwicklungsprogramme (pp. 19–36). Münster: Waxmann.

Jahnke, T. (1998). Zur Kritik und Bedeutung der Stoffdidaktik [On critique and relevance of ‘Stoffdidactic’]. Mathematica Didactica, 21(2), 61–74.

Kattmann, U., Duit, R., Gropengießer, H., & Komorek, M. (1997). Das Modell der Didaktischen Rekonstruktion – Ein Rahmen für naturwissenschaftsdidaktische Forschung und Entwicklung [The model of Educational Reconstruction für science education research and development]. Zeitschrift für Didaktik der Naturwissenschaften, 3(3), 3–18.

Kirsch, A. (1977). Zur Behandlung von Wachstumsprozessen und Exponentialfunktionen in der Unter- und Oberstufe. [On the treatment of growth and exponential functions] Mathematische Schriften – Preprint. Kassel: Gesamthochschule. (Reprinted 1978 in Österreichische Mathematische Gesellschaft (Eds.), Didaktik-Reihe 1, 17–37).

Kirsch, A. (1978). Aspects of Simplification in Mathematics Teaching. In H. Athen, & H. Kunle (Eds.), Proceedings of the third international congress on mathematical education, Karlsruhe 1976 (pp. 98–120). Karlsruhe: FIZ. Reprinted in I. Westbury, S. Hopmann, K. Riquarts (Eds.) (2000), Teaching as a reflective practice. The German Didaktik Tradition(pp. 267–284). Lawrence Erlbaum Publishers, London.

Kirsch, A. (1979). Ein Vorschlag zur visuellen Vermittlung einer Grundvorstellung vom Ableitungsbegriff. Der Mathematikunterricht, 25(3), 25–41.

Kirsch, A. (2014). The fundamental theorem of calculus: visually? ZDM – The International Journal on Mathematics Education, 46(4), 691–695.

Klafki, W. (1958). Didaktische Analyse als Kern der Unterrichtsvorbereitung. Die Deutsche Schule, 50(1), 450–471. Reprinted in English: Klafki, W. (1995). Didactic analyses as the core of preparation for instruction. Journal of Curriculum Studies, 27(1), 13–30.

Klein, F. (1908). Elementarmathematik vom höheren Standpunkte aus [Elementary Mathematics from an Advanced Standpoint] (vol. 1). Leipzig: Teubner.

Kröpfl, B., Peschek, W., & Schneider, E. (2000). Stochastik in der Schule: Globale Ideen, lokale Bedeutungen, zentrale Tätigkeiten [Stochastics in school: Big ideas, local meanings, central activities]. Mathematica Didactica, 23(2), 25–57.

Kühnel, J. (1919). Neubau des Rechenunterrichts [New structure of calculation classes]. Leipzig: Klinkhardt.

Lengnink, K. (2009). Vorstellungen bilden: Zwischen Lebenswelt und Mathematik [Developing conceptions: Between everyday context and mathematics]. In T. Leuders, L. Hefendehl-Hebeker, & H.-G. Weigand (Eds.), Mathemagische Momente (pp. 120–129). Berlin: Cornelsen.

Lengnink, K., & Prediger, S. (2000). Mathematisches Denken in der Linearen Algebra [Mathematical thinking in Linear Algebra]. ZDM – Zentralblatt für Didaktik der Mathematik, 32(4), 111–122.

Lesh, R. (1979). Mathematical learning disabilities. In R. Lesh, D. Mierkiewicz, & M. Kantowski (Eds.), Applied mathematical problem solving (pp. 111–180). Columbus: Ericismeac.

Leuders, T., Hußmann, S., Barzel, B., & Prediger, S. (2011). “Das macht Sinn!”  Sinnstiftung mit Kontexten und Kernideen [“That makes sense!” Construction of sense with contexts and core ideas]. Praxis der Mathematik in der Schule, 53(37), 2–9.

Malle, G. (2000). Zwei Aspekte von Funktionen: Zuordnung und Kovariation [Two aspects of functions: Correspondence and covariation]. Mathematik Lehren, 103, 8–11.

Oehl, W. (1962). Der Rechenunterricht in der Grundschule [Calculation classes in primary schools]. Hannover: Schroedel.

Plomp, T., & Nieveen, N. (2013). Educational design research: illustrative cases. Enschede: SLO, Netherlands Institute for Curriculum Development.

Prediger, S. (2008). Do you want me to do it with probability or with my normal thinking? Horizontal and vertical views on the formation of stochastic conceptions. International Electronic Journal of Mathematics Education, 3(3), 126–154.

Prediger, S., & Zwetzschler, L. (2013). Topic-specific design research with a focus on learning processes: The case of understanding algebraic equivalence in grade 8. In T. Plomp, & N. Nieveen (Eds.), Educational design research: illustrative cases (pp. 407–424). Enschede: SLO, Netherlands Institute for Curriculum Development.

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: first steps towards a conceptual framework. ZDM – The International Journal on Mathematics Education, 40(2), 165–178. doi:10.1007/s11858-008-0086-z.

Prediger, S., Link, M., Hinz, R., Hußmann, S., Thiele, J., & Ralle, B. (2012). Lehr-Lernprozesse initiieren und erforschen – Fachdidaktische Entwicklungsforschung im Dortmunder Modell Initiating and investigating teaching learning processes – Didactical Design Research. Mathematischer und Naturwissenschaftlicher Unterricht, 65(8), 452–457.

Prediger, S., Gravemeijer, K., & Confrey, J. (2015). Design research with a focus on learning processes – an overview on achievements and challenges. ZDM Mathematics Education, 47(6), 877–891. doi:10.1007/s11858-015-0722-3.

Reichel, H.-C. (1995). Hat die Stoffdidaktik Zukunft? [Does the ‘Stoffdidaktik’ have a future?]. ZDM – Zentralblatt für Didaktik der Mathematik, 27(6), 178–187.

Richter, V. (2014). Routen zum Begriff der linearen Funktion – Entwicklung und Beforschung eines kontextgestützten und darstellungsreichen Unterrichtsdesigns [Routes towards the concept of linear function – Development and Research of a context based and representation rich instructional design]. Wiesbaden: Springer.

Roth, H. (1970). Pädagogische Psychologie des Lehrens und Lernens [Pedagogical Psychology of teaching and learning]. Hannover: Schroedel.

Schink, A. (2013). Flexibler Umgang mit Brüchen [Flexibly dealing with fractions]. Wiesbaden: Springer Spektrum.

Schweiger, F. (2006). Fundamental Ideas. a bridge between mathematics and mathematics education. In J. Maaß, & W. Schlöglmann (Eds.), New mathematics education research and practice (pp. 63–73). Rotterdam: Sense.

Schwill, A. (1993). Fundamentale Ideen der Informatik [Big ideas of computer science]. Zentralblatt für Didaktik der Mathematik, 25(2), 20–31.

Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20–26.

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145.

Steinbring, H. (1998). Mathematikdidaktik: Die Erforschung theoretischen Wissens in sozialen Kontexten des Lernens und Lehrens [Mathematics didactics: Investigation theoretical knowledge in social contexts of learning and teaching]. ZDM – Zentralblatt für Didaktik der Mathematik, 30(5), 161–167.

Sträßer, R. (1996). Stoffdidaktik und Ingénierie didactique – ein Vergleich [‘Stoffdidactic’ and ‘Ingénierie didactique’ a comparison]. In G. Kadunz et al. (Ed.), Trends und Perspektiven (pp. 369–376). Vienna: Hölder-Pichler-Tempsky.

Thiel-Scheider, A. (in prep.). Students’ pathways to exponential growth – a design research study (Translated working title). PhD-Thesis in preparation, TU Dortmund.

Thompson, W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Chaimberlain, & S. Belbaise (Eds.), New perspectives and directions for collobarative reseach in mathematics education (pp. 33–57). Laramie: University of Wyoming.

Tietze, U.-P., Klika, M., & Wolpers, H. (1997). Mathematikunterricht in der Sekundarstufe II [Mathematics education in upper secondary schools]. vol. 1. Braunschweig: Vieweg.

Treffers, A. (1987). Three dimensions: a model of goal and theory description in mathematics instruction – The Wiskobas project. Dordrecht: Kluwer.

Usiskin, Z. (2008). The arithmetic curriculum and the real world. In D. D. Bock, B. D. Søndergaard, B. A. Gómez, & C. C. L. Cheng (Eds.), Proceedings of ICME-11 – Topic Study Group 10, Research and Development of Number Systems and Arithmetic (pp. 9–16). Monterrey: ICMI.

Vohns, A. (2010). Fünf Thesen zur Bedeutung von Kohärenz- und Differenzerfahrungen im Umfeld einer Orientierung an mathematischen Ideen [On the importance of experiencing coherence and differences in the context of big ideas – five theses]. Journal für Mathematik-Didaktik, 31(2), 227–255.

Vohns, A. (2016). Fundamental ideas as a guiding category in mathematics education – early understandings, developments in german-speaking countries and relations to subject matter Didactics. Journal für Mathematik-Didaktik. doi:10.1007/s13138-016-0086-4.

Vollrath, H.-J. (1978). Rettet die Ideen! [Save the ideas!]. Der Mathematisch Naturwissenschaftliche Unterricht, 31(8), 449–455.

Vollrath, H.-J. (1979). Die Bedeutung von Hintergrundtheorien für die Bewertung von Unterrichtssequenzen [The relevance of background theories for evaluation instructional sequences]. Der Mathematikunterricht, 25(5), 77–89.

Vollrath, H.-J. (1989). Funktionales Denken [Functional thinking]. Journal für Mathematik-Didaktik, 10(1), 3–37.

Wagenschein, M. (1968). Verstehen lehren. Genetisch – Sokratisch – Exemplarisch [Teaching understanding. Genetically, socratically, exemplarily]. Weinheim: Beltz.

Weber, K. (2002). Students’ understanding of exponential and logarithmic functions. In I. Vakalis et al. (Eds.), Second conference on the Teaching of Mathematics (pp. 1–10). Crete: University of Crete. http://www.math.uoc.gr/~ictm2/Proceedings/pap145.pdf . Accessed 16 May 2015

Westbury, I., Hopmann, S., & Riquarts, K. (Eds.). (2000). Teaching as a reflective practice. The German Didaktik Tradition. London: Lawrence Erlbaum.

Winkelmann, B. (1994). Preparing mathematics for students. In R. Biehler, R. W. Scholz, R. Sträßer, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 9–13). Dordrecht: Kluwer.

Winter, H. (1983). Über die Entfaltung begrifflichen Denkens [On the development of conceptual thinking]. Journal für Mathematik-Didaktik, 4(3), 175–204.

Wittmann, E. C. (1981). Grundfragen des Mathematikunterrichts [Basic questions of mathematics education]. Braunschweig: Vieweg.

Wittmann, E. C. (2012). Das Projekt “mathe 2000”: Wissenschaft für die Praxis – eine Bilanz aus 25 Jahren didaktischer Entwicklungsforschung. [The project “math 2000”: Academic discipline for practice – Taking stock of 25 years of didactical design research]. In G. N. Müller, C. Selter, & E. C. Wittmann (Eds.), Zahlen, Muster und Strukturen (pp. 265–279). Stuttgart: Klett.