Specific Role of Reactor Configurations on the Mass Transfer and Energy Yield: Case of “Batch” and "Circulating” Gliding arc Liquid–Gas Reactors—Part 1: Experimental Study

Plasma Chemistry and Plasma Processing - Tập 41 - Trang 855-870 - 2021
D. Iya-Sou1,2,3, T. J. Koyaouili1,2, C. Tcheka4, D. Abia2,3,4, S. Laminsi2, S. Ognier1, S. Cavadias1
1Institut de Recherche de Chimie Paris, CNRS – Chimie ParisTech, Paris, France
2Laboratoire de Chimie Minérale de Yaoundé I/Cameroon, Yaoundé, Cameroon
3Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere/Cameroon, Ngaoundere, Cameroon
4Department of Chemistry, Faculty of Sciences, University of Ngaoundere/Cameroun, Ngaoundere, Cameroon

Tóm tắt

The mass transfer and energy efficiency in the “batch” and “Circulating” gliding arc configuration reactors for the direct discharges and degradation of pollutants in the aqueous solution have been investigated. The mass transfer characterization and energy efficiency in this study showed that the “Batch” configuration would be more efficient than the “Circulating” reactor. The difference between these reactors is due to the plasma (gas)–solution (liquid) contact time, therefore the gas–liquid transfer phenomenon. The lowest value of pH (2.5) and high temperature obtained in the “Batch” reactor contributes to better nitrogen oxides (NOx) transfer and solubility consequently the high conversion of the phenol in this reactor configuration (100% after 10 min of treatment) relative to that obtained in the circulating reactor (≈ 50% after 30 min) with pH 4.7.

Tài liệu tham khảo

Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93(2):671–698 Benstaali B, Boubert P, Cheron BG, Addou A, Brisset JL (2002) Plasma Chem Plasma Proc 22:553–571 Pascal S, Moussa D, Hnatiuc E, Brisset JL (2010) J Hazard Mater 175(1–3):1037–1041 Kossitsyn M, Gutsol A, Friedman A (2003) Generation and diagnostic of non equilibrium plasma in gliding arc discharge. In: Proceedings of the 16th international conference on phenomena in ionized gases (ICPIG), Taormina, Italie, 2003, Po 4.6, p 231 Iya-Sou D, Laminsi S, Cavadias S, Ognier S (2012) Plasma Chem Plasma Process 33:97–113 Sander R (1999) Compilation of Henry’s law constant for inorganic and organic species of potential importance in environmental chemistry (version 3). http://www.henrys-law.org. Accessed Nov 2008 Bruggeman PJ et al (2016) Plasma Sources Sci Technol 25:053002 Wandell RJ, Wang H, Radha K, Bulusu M, Gallan RO, Locke BR (2019) Plasma Chem Plasma Process 39:643–666 Samukawa S et al (2012) J Phys D Appl Phys 45:253001–253037 Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:053001 Garrett BC, Schenter GK, Morita A (2006) Chem Rev 106:1355–1374 Prausnitz J, Lichtenthaler R, Azevedo E (1986) Molecular thermodynamics of fluid-phase equilibria. Prentice Hall, Englewood Cliffs Tizaoui C, Grima NM, Derdar MZ (2009) Chem Eng Sci 64:4375–4382 Killion JD, Garimella S (2001) Int J Refrig 24:755–797 Vaidya PK, Kenig EY (2007) Chem Eng Comm 194:1543–1565 Cadours R, Roquet D, Perdu G (2007) Competitive absorption–desorption of acid gas into water-DEA solutions. Ind Eng Chem Res 46:233–241 Ognier S, Iya-sou D, Fourmond C, Cavadias S (2009) Plasma Chem Plasma Process 29(4):261–273 Huang F, Chen L, Wang H, Zongcheng Y (2010) Chem Eng J 162(1):250–256 Jianwei Y et al (2019) Chemosphere 234:471–477 Marotta E, Ceriani E, Shapoval V, Schiorlin M, Ceretta C, Rea M, Paradisi C (2011) Eur Phys J Appl Phys 55:13811 Lukes P, Locke BR (2005) Ind Eng Chem Res 44:2921–2930 Doubla A, Burlica R, Hniatuc E, Brisset JL (2005) Phys Chem News 25:135–137 Delair L, Brisset JL, Cheron BG (2001) J High Temp Mater Proc 5:381–402 Von Gunten U (2003) Water Res 37:1443–1467 Moussa D, Doubla A, Kamgang YG, Brisset JL (2007) IEEE Trans Plasma Sci 35:444–453 Soloshenko IA, Tsiolko VV, Pogulay SS, Terent’yeva AG, Yu Bazhenov V, Shchdrin AI (2007) Plasma Source Sci Technol 16:56–66 Fridman A (2008) Plasma chemistry. University Press, Cambridge, p 978, ISBN: 13978-0-521-84735-3 Kogelschatz U, Eliasson E, Elgi W (1999) Pure Appl Chem 71(10):1819–1828 Yan JH, Du CM, Li XD, Cheron BG, Ni MJ, Cen KF (2006) Plasma Chem Plasma Process 26:1090-005-8723–6 Nguyen AV, Evans GM (2006) Appl Math Model 30:1472–1484 Christian W, Berendsen J, Zeegers CH, Darhuber AA (2013) Langmuir 29(51):15851–15858. https://doi.org/10.1021/la403988n Burlica R, Kirkpatrick JM, Locke BR (2006) J Electrostat 64:35–43 Basmadjian D (2011) Mass transfer and separation processes: principles and applications, vol 2. E CRC Press, p 512, ISBN-13: 978-1420051599 Marouf-Khelifa K, Abdelmalek F, Khelifa A, Belhadj M, Addou A, Brisset JL (2006) Sep Purif Technol 50:373–379 Dzengel J, Theurich J, Bahnemann DW (1999) Environ Sci Technol 33(2):294–300 Brisset JL, Hnatiu E (2012) Plasma Chem Plasma Process 32(4):655–674 Vione D, Maurino V, Minero C, Pelizzeti E (2001) Chemosphere 45:903–910 Noers C, Kenig EY, Gorak A (2003) Chem Eng Process 42:157–178 Richards NK, Wingen LM, Callahan KM, Nishino N, Kleinman MT, Tobias DJ, Finlayson-Pitts AJ (2011) J Phys Chem A 115:5810–5821 Mack J, Bolton JR (1999) J Photochem Photobiol A 128:1–13 Brisset JL et al (2008) Ind Eng Chem Res 47:5761–5781 Wandell JR, Wang H, Bulusu RKM, Gallan RO, Locke BR (2019) Plasma Chem Plasma Process 39:643–666 Kim HH, Prieto G, Takashima K, Katsura S, Mizuno A (2002) J Electrostat 55(1):25–41 Peri L, Pietraforte D, Scorza G, Napolitanob A, Fogliano V, Minetti M (2005) Free Radical Biol Med 39:668–681 Hoeben WFLM, van Veldhuizen EM, Rutgers WR, Cramers CAMG, Kroesen GMW (2000) Plasma Sour Sci Technol 9:361–369 Sano N, Yamane Y, Hori Y, Akatsuka T, Tamon H (2011) Ind Eng Chem Res 50:9901–9909 Marotta E, Ceriani E, Schiorlin M, Ceretta C, Paradisi C (2012) Water Res 46:6239–6246 Dojcinović BP, Manojlović D, Roglić GM, Obradović BM, Kuraica MM, Puric’ J (2008) Vacuum 83:234–237 Wang L, Jiang X (2009) J Hazard Mater 161:926–932 Abdelmalek F, Torres RA, Combet E, Petrier C, Pulgarin C, Addou A (2008) Sep Purif Technol 63:30–37