Specific Role of Reactor Configurations on the Mass Transfer and Energy Yield: Case of “Batch” and "Circulating” Gliding arc Liquid–Gas Reactors—Part 1: Experimental Study
Tóm tắt
The mass transfer and energy efficiency in the “batch” and “Circulating” gliding arc configuration reactors for the direct discharges and degradation of pollutants in the aqueous solution have been investigated. The mass transfer characterization and energy efficiency in this study showed that the “Batch” configuration would be more efficient than the “Circulating” reactor. The difference between these reactors is due to the plasma (gas)–solution (liquid) contact time, therefore the gas–liquid transfer phenomenon. The lowest value of pH (2.5) and high temperature obtained in the “Batch” reactor contributes to better nitrogen oxides (NOx) transfer and solubility consequently the high conversion of the phenol in this reactor configuration (100% after 10 min of treatment) relative to that obtained in the circulating reactor (≈ 50% after 30 min) with pH 4.7.
Tài liệu tham khảo
Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93(2):671–698
Benstaali B, Boubert P, Cheron BG, Addou A, Brisset JL (2002) Plasma Chem Plasma Proc 22:553–571
Pascal S, Moussa D, Hnatiuc E, Brisset JL (2010) J Hazard Mater 175(1–3):1037–1041
Kossitsyn M, Gutsol A, Friedman A (2003) Generation and diagnostic of non equilibrium plasma in gliding arc discharge. In: Proceedings of the 16th international conference on phenomena in ionized gases (ICPIG), Taormina, Italie, 2003, Po 4.6, p 231
Iya-Sou D, Laminsi S, Cavadias S, Ognier S (2012) Plasma Chem Plasma Process 33:97–113
Sander R (1999) Compilation of Henry’s law constant for inorganic and organic species of potential importance in environmental chemistry (version 3). http://www.henrys-law.org. Accessed Nov 2008
Bruggeman PJ et al (2016) Plasma Sources Sci Technol 25:053002
Wandell RJ, Wang H, Radha K, Bulusu M, Gallan RO, Locke BR (2019) Plasma Chem Plasma Process 39:643–666
Samukawa S et al (2012) J Phys D Appl Phys 45:253001–253037
Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:053001
Garrett BC, Schenter GK, Morita A (2006) Chem Rev 106:1355–1374
Prausnitz J, Lichtenthaler R, Azevedo E (1986) Molecular thermodynamics of fluid-phase equilibria. Prentice Hall, Englewood Cliffs
Tizaoui C, Grima NM, Derdar MZ (2009) Chem Eng Sci 64:4375–4382
Killion JD, Garimella S (2001) Int J Refrig 24:755–797
Vaidya PK, Kenig EY (2007) Chem Eng Comm 194:1543–1565
Cadours R, Roquet D, Perdu G (2007) Competitive absorption–desorption of acid gas into water-DEA solutions. Ind Eng Chem Res 46:233–241
Ognier S, Iya-sou D, Fourmond C, Cavadias S (2009) Plasma Chem Plasma Process 29(4):261–273
Huang F, Chen L, Wang H, Zongcheng Y (2010) Chem Eng J 162(1):250–256
Jianwei Y et al (2019) Chemosphere 234:471–477
Marotta E, Ceriani E, Shapoval V, Schiorlin M, Ceretta C, Rea M, Paradisi C (2011) Eur Phys J Appl Phys 55:13811
Lukes P, Locke BR (2005) Ind Eng Chem Res 44:2921–2930
Doubla A, Burlica R, Hniatuc E, Brisset JL (2005) Phys Chem News 25:135–137
Delair L, Brisset JL, Cheron BG (2001) J High Temp Mater Proc 5:381–402
Von Gunten U (2003) Water Res 37:1443–1467
Moussa D, Doubla A, Kamgang YG, Brisset JL (2007) IEEE Trans Plasma Sci 35:444–453
Soloshenko IA, Tsiolko VV, Pogulay SS, Terent’yeva AG, Yu Bazhenov V, Shchdrin AI (2007) Plasma Source Sci Technol 16:56–66
Fridman A (2008) Plasma chemistry. University Press, Cambridge, p 978, ISBN: 13978-0-521-84735-3
Kogelschatz U, Eliasson E, Elgi W (1999) Pure Appl Chem 71(10):1819–1828
Yan JH, Du CM, Li XD, Cheron BG, Ni MJ, Cen KF (2006) Plasma Chem Plasma Process 26:1090-005-8723–6
Nguyen AV, Evans GM (2006) Appl Math Model 30:1472–1484
Christian W, Berendsen J, Zeegers CH, Darhuber AA (2013) Langmuir 29(51):15851–15858. https://doi.org/10.1021/la403988n
Burlica R, Kirkpatrick JM, Locke BR (2006) J Electrostat 64:35–43
Basmadjian D (2011) Mass transfer and separation processes: principles and applications, vol 2. E CRC Press, p 512, ISBN-13: 978-1420051599
Marouf-Khelifa K, Abdelmalek F, Khelifa A, Belhadj M, Addou A, Brisset JL (2006) Sep Purif Technol 50:373–379
Dzengel J, Theurich J, Bahnemann DW (1999) Environ Sci Technol 33(2):294–300
Brisset JL, Hnatiu E (2012) Plasma Chem Plasma Process 32(4):655–674
Vione D, Maurino V, Minero C, Pelizzeti E (2001) Chemosphere 45:903–910
Noers C, Kenig EY, Gorak A (2003) Chem Eng Process 42:157–178
Richards NK, Wingen LM, Callahan KM, Nishino N, Kleinman MT, Tobias DJ, Finlayson-Pitts AJ (2011) J Phys Chem A 115:5810–5821
Mack J, Bolton JR (1999) J Photochem Photobiol A 128:1–13
Brisset JL et al (2008) Ind Eng Chem Res 47:5761–5781
Wandell JR, Wang H, Bulusu RKM, Gallan RO, Locke BR (2019) Plasma Chem Plasma Process 39:643–666
Kim HH, Prieto G, Takashima K, Katsura S, Mizuno A (2002) J Electrostat 55(1):25–41
Peri L, Pietraforte D, Scorza G, Napolitanob A, Fogliano V, Minetti M (2005) Free Radical Biol Med 39:668–681
Hoeben WFLM, van Veldhuizen EM, Rutgers WR, Cramers CAMG, Kroesen GMW (2000) Plasma Sour Sci Technol 9:361–369
Sano N, Yamane Y, Hori Y, Akatsuka T, Tamon H (2011) Ind Eng Chem Res 50:9901–9909
Marotta E, Ceriani E, Schiorlin M, Ceretta C, Paradisi C (2012) Water Res 46:6239–6246
Dojcinović BP, Manojlović D, Roglić GM, Obradović BM, Kuraica MM, Puric’ J (2008) Vacuum 83:234–237
Wang L, Jiang X (2009) J Hazard Mater 161:926–932
Abdelmalek F, Torres RA, Combet E, Petrier C, Pulgarin C, Addou A (2008) Sep Purif Technol 63:30–37