Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự lây truyền không gian và các yếu tố khí tượng quyết định tỷ lệ nhiễm lao tại tỉnh Thanh Hải, Trung Quốc: phân tích cụm không gian
Tóm tắt
Bệnh lao (TB) là bệnh truyền nhiễm có đăng ký với tỷ lệ mắc cao thứ hai ở tỉnh Thanh Hải, một tỉnh có cơ sở hạ tầng chăm sóc sức khỏe ban đầu kém. Hiểu biết về phân bố không gian của bệnh lao và các yếu tố môi trường liên quan là cần thiết để phát triển các chiến lược hiệu quả nhằm kiểm soát và loại bỏ bệnh lao. Dữ liệu về tỷ lệ mắc bệnh lao và dữ liệu khí tượng đã được trích xuất từ Hệ thống Thông tin về Kiểm soát và Phòng ngừa Bệnh tật Trung Quốc và từ các sách thống kê hàng năm. Chúng tôi đã tính toán chỉ số Moran toàn cầu và địa phương bằng cách sử dụng phân tích tự tương quan không gian để phát hiện sự cụm không gian của tỷ lệ mắc bệnh lao hàng năm. Mô hình dữ liệu bảng không gian đã được áp dụng để kiểm tra mối quan hệ giữa các yếu tố khí tượng và tỷ lệ mắc bệnh lao sau khi điều chỉnh các ảnh hưởng cá nhân không gian và tự tương quan không gian. Phương pháp Local Moran’s I phát hiện 11 quận với sự cụm không gian cao-cao đáng kể (tỷ lệ mắc trung bình hàng năm: 294/100.000) và 17 quận với sự cụm không gian thấp-thấp đáng kể (tỷ lệ mắc trung bình hàng năm: 68/100.000) của tỷ lệ mắc bệnh lao trong khoảng thời gian năm năm đã được kiểm tra; các giá trị Moran toàn cầu dao động từ 0,40 đến 0,58 (tất cả P < 0,05). Tỷ lệ mắc bệnh lao có mối liên hệ tích cực với nhiệt độ, lượng mưa và tốc độ gió (tất cả P < 0,05), điều này được xác nhận bởi mô hình dữ liệu bảng không gian. Mỗi mức tăng 10 °C, 2 cm và 1 m/s trong nhiệt độ, lượng mưa và tốc độ gió tương ứng dẫn đến giảm 9% và 3% và tăng 7% tỷ lệ mắc bệnh lao. Các khu vực có tỷ lệ mắc bệnh lao cao chủ yếu tập trung ở phía tây nam tỉnh Thanh Hải, trong khi các khu vực có tỷ lệ mắc bệnh lao thấp tập trung ở phía đông và tây bắc tỉnh Thanh Hải. Các khu vực có nhiệt độ và lượng mưa thấp và có tốc độ gió mạnh thường có tỷ lệ mắc bệnh lao cao hơn.
Từ khóa
#bệnh lao #tỷ lệ nhiễm #tỉnh Thanh Hải #yếu tố khí tượng #phân tích cụm không gianTài liệu tham khảo
Addis Z, Adem E, Alemu A, Birhan W, Mathewos B, Tachebele B, et al. Prevalence of smear positive pulmonary tuberculosis in Gondar prisoners, North West Ethiopia. Asian Pac J Trop Med. 2015;8(2):127–31. doi:10.1016/S1995-7645(14)60302-3.
Wang T, Xue F, Chen Y, Ma Y, Liu Y. The spatial epidemiology of tuberculosis in Linyi City, China, 2005-2010. BMC Public Health. 2012;12:885. doi:10.1186/1471-2458-12-885.
Hu H, Chen J, Sato KD, Zhou Y, Jiang H, Wu P, et al. Factors that associated with TB patient admission rate and TB inpatient service cost: a cross-sectional study in China. Infect Dis Poverty. 2016;5(1):4. doi:10.1186/s40249-016-0097-x.
Tang S. Tackling challenges of TB/MDRTB in China: concerted actions are imperative. Infect Dis Poverty. 2015;4:19. doi:10.1186/s40249-015-0050-4.
Liu Y, Li X, Wang W, Li Z, Hou M, He Y, et al. Investigation of space-time clusters and geospatial hot spots for the occurrence of tuberculosis in Beijing. Int J Tuberc Lung Dis. 2012;16(4):486–91. doi:10.5588/ijtld.11.0255.
Li XX, Wang LX, Zhang H, Du X, Jiang SW, Shen T, et al. Seasonal variations in notification of active tuberculosis cases in China, 2005-2012. PLoS One. 2013;8(7):e68102. doi:10.1371/journal.pone.0068102.
Ben-Selma W, Harizi H, Letaief M, Boukadida J. Age- and gender-specific effects on NRAMP1 gene polymorphisms and risk of the development of active tuberculosis in Tunisian populations. Int J Infect Dis. 2012;16(7):e543–50. doi:10.1016/j.ijid.2011.11.016.
Rhines AS. The role of sex differences in the prevalence and transmission of tuberculosis. Tuberculosis (Edinb). 2013;93(1):104–7. doi:10.1016/j.tube.2012.10.012.
Cois A, Ehrlich R. Problem drinking as a risk factor for tuberculosis: a propensity score matched analysis of a national survey. BMC Public Health. 2013;13:871. doi:10.1186/1471-2458-13-871.
Singh PN, Yel D, Kheam T, Hurd G, Job JS. Cigarette smoking and tuberculosis in Cambodia: findings from a national sample. Tob Induc Dis. 2013;11(1):8. doi:10.1186/1617-9625-11-8.
Sun W, Gong J, Zhou J, Zhao Y, Tan J, Ibrahim AN, et al. A spatial, social and environmental study of tuberculosis in China using statistical and GIS technology. Int J Environ Res Public Health. 2015;12(2):1425–48. doi:10.3390/ijerph120201425.
Li XX, Wang LX, Zhang J, Liu YX, Zhang H, Jiang SW, et al. Exploration of ecological factors related to the spatial heterogeneity of tuberculosis prevalence in P. R. China. Glob Health Action. 2014;7:23620. doi:10.3402/gha.v7.23620.
Ukwaja KN, Alobu I, Abimbola S, Hopewell PC. Household catastrophic payments for tuberculosis care in Nigeria: incidence, determinants, and policy implications for universal health coverage. Infect Dis Poverty. 2013;2(1):21. doi:10.1186/2049-9957-2-21.
Zou B, Peng F, Wan N, Mamady K, Wilson GJ. Spatial cluster detection of air pollution exposure inequities across the United States. PLoS One. 2014;9(3):e91917. doi:10.1371/journal.pone.0091917.
Varga C, Pearl DL, McEwen SA, Sargeant JM, Pollari F, Guerin MT. Area-level global and local clustering of human Salmonella Enteritidis infection rates in the city of Toronto, Canada, 2007-2009. BMC Infect Dis. 2015;15:359. doi:10.1186/s12879-015-1106-6.
Abbas T, Younus M, Muhammad SA. Spatial cluster analysis of human cases of Crimean Congo hemorrhagic fever reported in Pakistan. Infect Dis Poverty. 2015;4:9. doi:10.1186/2049-9957-4-9.
Selemani M, Mrema S, Shamte A, Shabani J, Mahande MJ, Yeates K, et al. Spatial and space- time clustering of mortality due to malaria in rural Tanzania: evidence from Ifakara and Rufiji Health and Demographic Surveillance System sites. Malar J. 2015;14:369. doi:10.1186/s12936-015-0905-y.
Saman DM, Cole HP, Odoi A, Myers ML, Carey DI, Westneat SC. A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002. PLoS One. 2012;7(1):e30532. doi:10.1371/journal.pone.0030532.
Ngamini Ngui A, Apparicio P, Moltchanova E, Vasiliadis HM. Spatial analysis of suicide mortality in Quebec: spatial clustering and area factor correlates. Psychiatry Res. 2014;220(1-2):20–30. doi:10.1016/j.psychres.2014.07.033.
Caprarelli G, Fletcher S. A brief review of spatial analysis concepts and tools used for mapping, containment and risk modelling of infectious diseases and other illnesses. Parasitology. 2014;141(5):581–601. doi:10.1017/S0031182013001972.
Zulu LC, Kalipeni E, Johannes E. Analyzing spatial clustering and the spatiotemporal nature and trends of HIV/AIDS prevalence using GIS: the case of Malawi, 1994-2010. BMC Infect Dis. 2014;14:285. doi:10.1186/1471-2334-14-285.
Lee SS, Wong NS. The clustering and transmission dynamics of pandemic influenza A (H1N1) 2009 cases in Hong Kong. J Infect. 2011;63(4):274–80. doi:10.1016/j.jinf.2011.03.011.
Wubuli A, Xue F, Jiang D, Yao X, Upur H, Wushouer Q. Socio-Demographic Predictors and Distribution of Pulmonary Tuberculosis (TB) in Xinjiang, China: A Spatial Analysis. PLoS One. 2015;10(12):e0144010. doi:10.1371/journal.pone.0144010.
Wang H, Du Z, Wang X, Liu Y, Yuan Z, Liu Y, et al. Detecting the association between meteorological factors and hand, foot, and mouth disease using spatial panel data models. Int J Infect Dis. 2015;34:66–70. doi:10.1016/j.ijid.2015.03.007.
Ehlert A, Oberschachtsiek D. Does managed care reduce health care expenditure? Evidence from spatial panel data. Int J Health Care Finance Econ. 2014;14(3):207–27. doi:10.1007/s10754-014-9145-x.
Barufi AM, Haddad E, Paez A. Infant mortality in Brazil, 1980-2000: a spatial panel data analysis. BMC Public Health. 2012;12:181. doi:10.1186/1471-2458-12-181.
Wu W, Guo J, Guan P, Sun Y, Zhou B. Clusters of spatial, temporal, and space-time distribution of hemorrhagic fever with renal syndrome in Liaoning Province, Northeastern China. BMC Infect Dis. 2011;11:229. doi:10.1186/1471-2334-11-229.
Chen Y. New approaches for calculating Moran’s index of spatial autocorrelation. PLoS One. 2013;8(7):e68336. doi:10.1371/journal.pone.0068336.
Xia J, Cai S, Zhang H, Lin W, Fan Y, Qiu J, et al. Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011. Malar J. 2015;14:145. doi:10.1186/s12936-015-0650-2.
Yazdani-Charati J, Siamian H, Kazemnejad A, Mohammad V. Spatial clustering of tuberculosis incidence in the North of Iran. Glob J Health Sci. 2014;6(6):288–94. doi:10.5539/gjhs.v6n6p288.
Li Y, Zhou YZ, Zhang CB, Dou L, Du HY, Lin XM, et al. Application of local Moran’s I and GIS to identify hotspots of Ni, Cr of vegetable soils in high-incidence area of liver cancer from the Pearl River Delta, South China. Huan Jing Ke Xue (in Chinese). 2010;31(6):1617–23.
Wei Y, Huang Y, Luo L, Xiao X, Liu L, Yang Z. Rapid increase of scrub typhus: an epidemiology and spatial-temporal cluster analysis in Guangzhou City, Southern China, 2006–2012. PLoS One. 2014;9(7):e101976. doi:10.1371/journal.pone.0101976.
Kelejian HH, Prucha IR. Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances. J Econom. 2010;157(1):53–67. doi:10.1016/j.jeconom.2009.10.025.
Ponicki WR, Gruenewald PJ, Remer LG. Spatial panel analyses of alcohol outlets and motor vehicle crashes in California: 1999-2008. Accid Anal Prev. 2013;55:135–43. doi:10.1016/j.aap.2013.03.001.
Leonard WR, Reyes-Garcia V, Tanner S, Rosinger A, Schultz A, Vadez V, et al. The Tsimane’ Amazonian Panel Study (TAPS): Nine years (2002-2010) of annual data available to the public. Econ Hum Biol. 2015;19:51–61. doi:10.1016/j.ehb.2015.07.004.
Kumar V, Singh A, Adhikary M, Daral S, Khokhar A, Singh S. Seasonality of tuberculosis in delhi, India: a time series analysis. Tuberc Res Treat. 2014;2014:514093. doi:10.1155/2014/514093.
Narula P, Sihota P, Azad S, Lio P. Analyzing seasonality of tuberculosis across Indian states and union territories. J Epidemiol Glob Health. 2015;5(4):337–46. doi:10.1016/j.jegh.2015.02.004.
Naranbat N, Nymadawa P, Schopfer K, Rieder HL. Seasonality of tuberculosis in an Eastern- Asian country with an extreme continental climate. Eur Respir J. 2009;34(4):921–5. doi:10.1183/09031936.00035309.
Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, et al. Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reactivation disease. BMC Med. 2015;13:88. doi:10.1186/s12916-015-0341-4.
Harling G, Castro MC. A spatial analysis of social and economic determinants of tuberculosis in Brazil. Health Place. 2014;25:56–67. doi:10.1016/j.healthplace.2013.10.008.
Prussing C, Castillo-Salgado C, Baruch N, Cronin WA. Geo-epidemiologic and molecular characterization to identify social, cultural, and economic factors where targeted tuberculosis control activities can reduce incidence in Maryland, 2004-2010. Public Health Rep. 2013;128 Suppl 3:104–14.
Scott C, Kirking HL, Jeffries C, Price SF, Pratt R. Tuberculosis trends--United States, 2014. MMWR Morb Mortal Wkly Rep. 2015;64(10):265–9.
Mamaev IA, Khachirov Dzh G, Guseinov GK. Tuberculosis morbidity in a male population by the climatic, geographic and administrative rural areas of Dagestan. Probl Tuberk (in Russian). 2000;2:13–7.
Tattevin P, Che D, Fraisse P, Gatey C, Guichard C, Antoine D, et al. Factors associated with patient and health care system delay in the diagnosis of tuberculosis in France. Int J Tuberc Lung Dis. 2012;16(4):510–5. doi:10.5588/ijtld.11.0420.
Cheng S, Chen W, Yang Y, Chu P, Liu X, Zhao M, et al. Effect of Diagnostic and Treatment Delay on the Risk of Tuberculosis Transmission in Shenzhen, China: An Observational Cohort Study, 1993-2010. PLoS One. 2013;8(6):e67516. doi:10.1371/journal.pone.0067516.
Belay M, Bjune G, Ameni G, Abebe F. Diagnostic and treatment delay among Tuberculosis patients in Afar Region, Ethiopia: a cross-sectional study. BMC Public Health. 2012;12:369. doi:10.1186/1471-2458-12-369.
Fares A. Seasonality of tuberculosis. J Glob Infect Dis. 2011;3(1):46–55. doi:10.4103/0974-777X.77296.