Spatial resolution and object segmentation efficiency constrain grouping effects in attentive tracking
Tóm tắt
Previous studies of multiple object tracking suggested that spatiotemporal features (e.g., speed, direction, location) and surface features (e.g., color, shape, size) can guide perceptual grouping. However, it is still unclear how target-distractor distinctiveness and target-background similarity affect grouping effects in attentive tracking. To address these two questions, three experiments have been carried out in the current study. In Experiment 1, we manipulated the target-distractor distinctiveness and found that tracking performance logarithmically improved when the target-distractor distinctiveness linearly increased. In Experiment 2a and 2b, we varied the target-background similarity and found that too high or too low target-background similarity damaged the tracking performance, while only the middle target-background similarity resulted in the best tracking performance. These findings reveal that not only target-distractor distinctiveness but also target-background similarity plays a vital role in guiding the attention of perceptual grouping in attentive tracking. The guidance induced by target-distractor distinctiveness is constrained by the spatial resolution, while the guidance induced by target-background similarity is constrained by the efficiency of object segmentation. Additionally, our results showed that tracking capacity varied with the target-distractor distinctiveness and the target-background similarity, even though the number of targets being tracked was fixed. It suggests that there may be a trade-off between the difficulty of tracking and the number of targets that can be tracked. Thus, tracking capacity is more likely to be limited by the flexible attention resources rather than the number of fixed slots.
Tài liệu tham khảo
Allen, R., Mcgeorge, P., Pearson, D., & Milne, A. B. (2004). Attention and expertise in multiple target tracking. Applied Cognitive Psychology, 18(3), 337–347. https://doi.org/10.1002/acp.975.
Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track?: Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 1–10. https://doi.org/10.1167/7.13.14.
Bettencourt, K. C., & Somers, D. C. (2009). Effects of target enhancement and distractor suppression on multiple object tracking capacity. Journal of Vision, 9(7), 74–76. https://doi.org/10.1167/9.7.9.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897x00357.
Duncan, J. S., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. https://doi.org/10.1037/0033-295x.96.3.433.
Erlikhman, G., Keane, B. P., Mettler, E., Horowitz, T. S., & Kellman, P. J. (2013). Automatic feature-based grouping during multiple object tracking. Journal of Experimental Psychology: Human Perception & Performance, 39(6), 1625–1637. https://doi.org/10.1037/a0031750.
Farmer, E. W., & Taylor, R. M. (1980). Visual search through color displays: Effects of target-background similarity and background uniformity. Perception & Psychophysics, 27(3), 267–272. https://doi.org/10.3758/BF03204265.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. (2009). Statistical power analyses using G*power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149.
Fechner, G. T. (1860). Element der Psychophysik. Leipzig: Breitkopf and Harterl.
Feria, C. S. (2012). The effects of distractors in multiple object tracking are modulated by the similarity of distractor and target features. Perception, 41(3), 287–304. https://doi.org/10.1068/p7053.
Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134–141. https://doi.org/10.1016/j.tics.2013.01.010.
Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M. (2010). Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity. Psychological Science, 21(7), 920–925. https://doi.org/10.1177/0956797610373935.
Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572–576. https://doi.org/10.1111/j.1467-9280.2006.01746.x.
He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383(6598), 334–337. https://doi.org/10.1038/383334a0.
He, S., Cavanagh, P., & Intriligator, J. (1997). Attentional resolution. Trends in Cognitive Sciences, 1(3), 115–121. https://doi.org/10.1016/S1364-6613(97)89058-4.
Hopf, J. M., Boehler, C. N., Luck, S. J., Tsotsos, J. K., Heinze, H. J., & Schoenfeld, M. A. (2006). Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences, 103(4), 1053–1058. https://doi.org/10.1073/pnas.0507746103.
Horowitz, T. S., & Kuzmova, Y. (2011). Can we track holes? Vision Research, 51(9), 1013–1021. https://doi.org/10.1016/j.visres.2011.02.009.
Hothorn, T., Hornik, K., van de Wiel, M. A., & Zeileis, A. (2008). Implementing a class of permutation tests: The coin package. Journal of Statistical Software, 28(8), 1–23. https://doi.org/10.18637/jss.v028.i08.
Howe, P. D. L., & Holcombe, A. O. (2012). The effect of visual distinctiveness on multiple object tracking performance. Frontiers in Psychology, 3(307), 1–7. https://doi.org/10.3389/fpsyg.2012.00307.
Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43(3), 171–216. https://doi.org/10.1006/cogp.2001.0755.
Joblove, G. H., & Greenberg, D. (1978). Color spaces for computer graphics. Paper Presented at the Conference on Computer Graphics and Interactive Techniques. https://doi.org/10.1145/800248.807362.
Keane, B. P., & Pylyshyn, Z. W. (2006). Is motion extrapolation employed in multiple object tracking? Tracking as a low-level, non-predictive function. Cognitive Psychology, 52(4), 346–368. https://doi.org/10.1016/j.cogpsych.2005.12.001.
Luu, T., & Howe, P. D. L. (2015). Extrapolation occurs in multiple object tracking when eye movements are controlled. Attention, Perception, & Psychophysics, 77(6), 1919–1929. https://doi.org/10.3758/s13414-015-0891-8.
Makovski, T., & Jiang, Y. V. (2009a). The role of visual working memory in attentive tracking of unique objects. Journal of Experimental Psychology: Human Perception & Performance, 35(6), 1687–1697. https://doi.org/10.1037/a0016453.
Makovski, T., & Jiang, Y. V. (2009b). Feature binding in attentive tracking of distinct objects. Visual Cognition, 17(1–2), 180–194. https://doi.org/10.1080/13506280802211334.
Müller, N. G., Mollenhauer, M., Rösler, A., & Kleinschmidt, A. (2005). The attentional field has a Mexican hat distribution. Vision Research, 45(9), 1129–1137. https://doi.org/10.1016/j.visres.2004.11.003.
Neider, M. B., Boot, W. R., & Kramer, A. F. (2010). Visual search for real world targets under conditions of high target-background similarity: Exploring training and transfer in younger and older adults. Acta Psychologica, 134(1), 29–39. https://doi.org/10.1016/j.actpsy.2009.12.001.
Neider, M. B., & Zelinsky, G. J. (2006). Searching for camouflaged targets: Effects of target-background similarity on visual search. Vision Research, 46(14), 2217–2235. https://doi.org/10.1016/j.visres.2006.01.006.
Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7(1), 44–64. https://doi.org/10.1016/0010-0285(75)90004-3.
Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in Cognitive Sciences, 11(12), 520–527. https://doi.org/10.1016/j.tics.2007.09.009.
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. https://doi.org/10.1163/156856897x00366.
Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179–197. https://doi.org/10.1163/156856888x00122.
Shim, W. M., Alvarez, G. A., & Jiang, Y. V. (2008). Spatial separation between targets constrains maintenance of attention on multiple objects. Psychonomic Bulletin & Review, 15(2), 390–397. https://doi.org/10.3758/PBR.15.2.390.
Shim, W. M., Alvarez, G. A., Vickery, T. J., & Jiang, Y. V. (2010). The number of attentional foci and their precision are dissociated in the posterior parietal cortex. Cerebral Cortex, 20(6), 1341–1349. https://doi.org/10.1093/cercor/bhp197.
Smith, A. R. (1978). Color gamut transform pairs. Acm Siggraph Computer Graphics, 12(3), 12–19. https://doi.org/10.1145/965139.807361.
Suganuma, M., & Yokosawa, K. (2006). Grouping and trajectory storage in multiple object tracking: Impairments due to common item motions. Perception, 35(4), 483–495. https://doi.org/10.1068/p5487.
Wang, C., Zhang, X., Li, Y., & Lyu, C. (2016). Additivity of feature-based and symmetry-based grouping effects in multiple object tracking. Frontiers in Psychology, 7(657), 1–13. https://doi.org/10.3389/fpsyg.2016.00657.
Wang, C., Hu, L., Hu, S., Xu, Y., & Zhang, X. (2018). Functional specialization for feature-based and symmetry-based groupings in multiple object tracking. Cortex, 108(2018), 265–275. https://doi.org/10.1016/j.cortex.2018.09.005.
Wang, C., Hu, L., Talhelm, T., & Zhang, X. (2019). The effects of colour complexity and similarity on multiple object tracking performance. Quarterly Journal of Experimental Psychology, 72(8), 1903–1912. https://doi.org/10.1177/1747021818817388.
Wolfe, J. M., Oliva, A., Horowitz, T. S., Butcher, S. J., & Bompas, A. (2002). Segmentation of objects from backgrounds in visual search tasks. Vision Research, 42(28), 2985–3004. https://doi.org/10.1016/s0042-6989(02)00388-7.
Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24(3), 295–340. https://doi.org/10.1016/0010-0285(92)90010-y.
Zhao, L., Gao, Q., Ye, Y., Zhou, J., Shui, R., & Shen, M. (2014). The role of spatial configuration in multiple identity tracking. PLoS One, 9(4), e93835. https://doi.org/10.1371/journal.pone.0093835.