Spatial relationship between climatologies and changes in global vegetation activity

Global Change Biology - Tập 19 Số 6 - Trang 1953-1964 - 2013
Rogier de Jong1, Michael E. Schaepman1, Reinhard Furrer2, Sytze de Bruin3, Peter H. Verburg4
1Remote Sensing Laboratories; University of Zurich; Wintherthurerstrasse 190; 8057; Zurich; Switzerland
2Institute of Mathematics University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
3Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, PO Box 47, 6700AA Wageningen, The Netherlands
4Institute for Environmental Studies, VU University Amsterdam, de Boelelaan 1087, 1081HV Amsterdam, the Netherlands

Tóm tắt

Abstract

Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land‐cover and climate‐related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature. However, little remains known about the processes underlying these changes at large spatial scales. In this study, we aimed at quantifying the spatial relationship between changes in potential climatic growth constraints (i.e. temperature, precipitation and incident solar radiation) and changes in vegetation activity (1982–2008). We demonstrate an additive spatial model with 0.5° resolution, consisting of a regression component representing climate‐associated effects and a spatially correlated field representing the combined influence of other factors, including land‐use change. Little over 50% of the spatial variance could be attributed to changes in climatologies; conspicuously, many greening trends and browning hotspots in Argentina and Australia. The nonassociated model component may contain large‐scale human interventions, feedback mechanisms or natural effects, which were not captured by the climatologies. Browning hotspots in this component were especially found in subequatorial Africa. On the scale of land‐cover types, strongest relationships between climatologies and vegetation activity were found in forests, including indications for browning under warming conditions (analogous to the divergence issue discussed in dendroclimatology).

Từ khóa


Tài liệu tham khảo

10.1016/j.rse.2012.05.019

10.1111/j.1365-2486.2009.01956.x

Allen R, 1994, An update for the definition of reference evapotranspiration, ICID Bulletin, 43, 1

10.1016/j.jaridenv.2005.03.007

10.1111/j.1475-2743.2008.00169.x

10.3390/s8095397

10.1016/j.landusepol.2010.11.003

10.1016/j.gloenvcha.2011.02.002

10.1109/TGRS.2005.860205

10.1038/35012241

10.1007/s100219900016

CRU: University of East Anglia Climatic Research Unit(2008)Jones Phil and Harris Ian (investigators): CRU Time Series (TS) high resolution gridded datasets.NCAS British Atmospheric Data Centre. Available at:http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276(accessed 8 July 2011).

10.1016/j.gloplacha.2007.03.004

10.1016/j.rse.2010.10.011

10.1111/j.1365-2486.2011.02578.x

10.1080/13658810701812836

10.1080/153249802317304422

10.1080/014311698216198

10.1029/2002GL016772

10.5194/hess-11-1069-2007

10.1016/S0140-1963(03)00121-6

10.1016/j.rse.2010.09.014

10.1016/j.rse.2012.01.017

10.1016/0034-4257(94)00066-V

10.1016/S0034-4257(02)00078-0

10.1007/s11222-008-9075-x

GDAL(2012)GDAL – Geospatial Data Abstraction Library Open Source Geospatial Foundation. Available at:http://gdal.osgeo.org(accessed 10 August 2011).

10.5194/bgd-9-1021-2012

Goetz SJ, 2011, Eurasian Arctic Land Cover and Land Use in a Changing Climate, 9

10.1029/2001JD001242

10.1016/j.jaridenv.2011.05.002

10.1016/j.gloenvcha.2005.08.004

10.1029/2005GL024370

10.1080/01431168608948945

Huete AR, 1997, The use of vegetation indices in forested regions: issues of linearity and saturation, Geoscience and Remote Sensing Symposium (IGARSS), 4, 1966

10.1080/01431160110119416

10.1080/01431160701253279

10.1016/j.rse.2006.03.011

10.1109/36.885205

10.1080/01431160119381

10.1073/pnas.1018776108

10.1111/j.1365-2389.2005.00768.x

10.1016/S0094-5765(98)00050-2

10.1080/014311600210191

10.1126/science.325_564

10.1002/joc.1181

10.1109/TGRS.1995.8746029

10.1016/j.rse.2008.10.007

10.5751/ES-01826-110229

10.1126/science.1082750

10.1029/1999RG900014

10.1111/j.1365-2486.2011.02506.x

10.1016/j.jaridenv.2005.03.008

10.1016/S0006-3207(99)00195-0

10.1080/01431160802302090

10.1016/j.rse.2009.01.016

10.1088/1748-9326/7/2/024021

R Development Core Team, 2012, R: A Language and Environment for Statistical Computing

10.1007/s004420100760

10.1080/014311600209814

Running SW, 1994, A vegetation classification logic based on remote sensing for use in global biogeochemical models, Ambio, 23, 77

10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2

Seaquist JW, 2008, Disentangling the effects of climate and people on Sahel vegetation dynamics, Biogeosciences, 6, 469, 10.5194/bg-6-469-2009

10.1046/j.1365-2486.2003.00507.x

10.1029/2004JD004570

10.1016/0168-1923(86)90060-2

10.1201/9781420089653.ch10

10.1080/01431160310001618149

10.1007/s00484-001-0109-8

10.1080/01431160500168686

10.1111/j.1365-2486.2012.02759.x

10.1111/j.1365-2486.2010.02307.x

10.1111/j.1365-2486.2010.02293.x

10.1016/j.jaridenv.2006.05.015

10.1016/j.rse.2012.06.022

10.1126/science.1103215

10.1098/rstb.2008.0017

10.1080/01431160500033682

10.1007/s00267-008-9101-y

10.1029/2006GL026267

10.1126/science.1192666

10.1126/science.1199169

10.1029/2000JD000115

Zhuravleva TB, 2006, On calculation of photosynthetically active radiation in estimation of carbon balance parameters of surface ecosystems, Atmospheric and Oceanic Optics, 19, 57