Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria

BMC Systems Biology - Tập 8 - Trang 1-10 - 2014
Pablo Meyer1, Guillermo Cecchi1, Gustavo Stolovitzky1
1IBM Computational Biology Center, Yorktown Heights, USA

Tóm tắt

Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli’s metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell’s metabolic network.

Tài liệu tham khảo

Morris DM, Jensen GJ: Toward a biomechanical understanding of whole bacterial cells. Annu Rev Biochem. 2008, 77: 583-613. 10.1146/annurev.biochem.77.061206.173846. Berg HC, Purcell EM: Physics of chemoreception. Biophys J. 1977, 20: 193-219. 10.1016/S0006-3495(77)85544-6. Bray D, Levin MD, Morton-Firth CJ: Receptor clustering as a cellular mechanism to control sensitivity. Nature. 1998, 393: 85-88. 10.1038/30018. Heinrich R, Rapoport TA: A linear steady-state treatment of enzymatic chains. general properties, control and effector strength. Eur J Biochem. 1974, 42: 89-95. 10.1111/j.1432-1033.1974.tb03318.x. Rohwer JM, Meadow ND, Roseman S, Westerhoff HV, Postma PW: Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phosphotransferase system on the basis of kinetic measurements in vitro. J Biol Chem. 2000, 275: 34909-34921. 10.1074/jbc.M002461200. Szczesiul M, Wampler DE: Regulation of a metabolic system in vitro: synthesis of threonine from aspartic acid. Biochemistry. 1976, 15: 2236-2244. 10.1021/bi00655a033. Savage DF, Afonso B, Chen AH, Silver PA: Spatially ordered dynamics of the bacterial carbon fixation machinery. Science. 2010, 327: 1258-1261. 10.1126/science.1186090. Straight PD, Fischbach MA, Walsh CT, Rudner DZ, Kolter R: A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci U S A. 2007, 104: 305-310. 10.1073/pnas.0609073103. Komeili A, Li Z, Newman DK, Jensen GJ: Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science. 2006, 311: 242-245. 10.1126/science.1123231. Spivey HO, Ovadi J: Substrate channeling. Methods. 1999, 19: 306-321. 10.1006/meth.1999.0858. Srere PA: Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987, 56: 89-124. 10.1146/annurev.bi.56.070187.000513. Dunn MF, Niks D, Ngo H, Barends TR, Schlichting I: Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem Sci. 2008, 33: 254-264. 10.1016/j.tibs.2008.04.008. Huang X, Holden HM, Raushel FM: Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem. 2001, 70: 149-180. 10.1146/annurev.biochem.70.1.149. Iancu CV, Ding HJ, Morris DM, Dias DP, Gonzales AD, Martino A, Jensen GJ: The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography. J Mol Biol. 2007, 372: 764-773. 10.1016/j.jmb.2007.06.059. Finking R, Marahiel MA: Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol. 2004, 58: 453-488. 10.1146/annurev.micro.58.030603.123615. Luer C, Schauer S, Mobius K, Schulze J, Schubert WD, Heinz DW, Jahn D, Moser J: Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. J Biol Chem. 2005, 280: 18568-18572. 10.1074/jbc.M500440200. Dammeyer T, Frankenberg-Dinkel N: Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J Biol Chem. 2006, 281: 27081-27089. 10.1074/jbc.M605154200. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H: Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 2005, 12: 291-299. 10.1093/dnares/dsi012. Landgraf D, Okumus B, Chien P, Baker TA, Paulsson J: Segregation of molecules at cell division reveals native protein localization. Nat Methods. 2012, 9: 480-482. 10.1038/nmeth.1955. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121., Wessely F, Bartl M, Guthke R, Li P, Schuster S, Kaleta C: Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs. Mol Syst Biol 2011, 7:515., Kaleta C, de Figueiredo LF, Schuster S: Can the whole be less than the sum of its parts? pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res. 2009, 19: 1872-1883. 10.1101/gr.090639.108. Ma’ayan A, Cecchi GA, Wagner J, Rao AR, Iyengar R, Stolovitzky G: Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks. Proc Natl Acad Sci U S A. 2008, 105: 19235-19240. 10.1073/pnas.0805344105. Cox GB, Newton NA, Gibson F, Snoswell AM, Hamilton JA: The function of ubiquinone in Escherichia coli. Biochem J. 1970, 117: 551-562. van Heijenoort J: Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep. 2001, 18: 503-519. 10.1039/a804532a. van Albada SB, ten Wolde PR: Enzyme localization can drastically affect signal amplification in signal transduction pathways. PLoS Comput Biol. 2007, 3: 1925-1934. An S, Kumar R, Sheets ED, Benkovic SJ: Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science. 2008, 320: 103-106. 10.1126/science.1152241. Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O’Connell JD, Mirrielees J, Ellington AD, Marcotte EM: Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci U S A. 2009, 106 (25): 10147-52. 10.1073/pnas.0812771106. John M, Schmitz RP, Westermann M, Richter W, Diekert G: Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Arch Microbiol. 2006, 186: 99-106. 10.1007/s00203-006-0125-5. Graham JW, Williams TC, Morgan M, Fernie AR, Ratcliffe RG, Sweetlove LJ: Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell. 2007, 19: 3723-3738. 10.1105/tpc.107.053371. Levine E, Hwa T: Stochastic fluctuations in metabolic pathways. Proc Natl Acad Sci U S A. 2007, 104: 9224-9229. 10.1073/pnas.0610987104. Choudhary S, Quin MB, Sanders MA, Johnson ET, Schmidt-Dannert C: Engineered protein nano-compartments for targeted enzyme localization. PLoS One 2012, 7:e33342., Li J, Nayak S, Mrksich M: Rate enhancement of an interfacial biochemical reaction through localization of substrate and enzyme by an adaptor domain. J Phys Chem B. 2010, 114: 15113-15118. 10.1021/jp102820e. Agapakis CM, Boyle PM, Silver PA: Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol. 2012, 8: 527-535. 10.1038/nchembio.975. Maslov S, Sneppen K: Specificity and stability in topology of protein networks. Science. 2002, 296: 910-913. 10.1126/science.1065103.