Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation

Journal of Fish Biology - Tập 69 Số sc - Trang 21-47 - 2006
David O. Conover1, Lora M. Clarke1, Stephan B. Munch1, Glenn N. Wagner1
1Marine Sciences Research Center, Stony Brook University, Stony Brook, NY 11794-5000, U.S.A.

Tóm tắt

Knowledge of geographic and temporal scales of adaptive genetic variation is crucial to species conservation, yet understanding of these phenomena, particularly in marine systems, is scant. Until recently, the belief has been that because most marine species have highly dispersive or mobile life stages, local adaptation could occur only on broad geographic scales. This view is supported by comparatively low levels of genetic variation among populations as detected by neutral markers. Similarly, the time scale of adaptive divergence has also been assumed to be very long, requiring thousands of generations. Recent studies of a variety of species have challenged these beliefs. First, there is strong evidence of geographically structured local adaptation in physiological and morphological traits. Second, the proportion of quantitative trait variation at the among‐population level (QST) is much higher than it is for neutral markers (FST) and these two metrics of genetic variation are poorly correlated. Third, evidence that selection is a potent evolutionary force capable of sustaining adaptive divergence on contemporary time scales is summarized. The differing spatial and temporal scales of adaptive v. neutral genetic divergence call for a new paradigm in thinking about the relationship between phenogeography (the geography of phenotypic variation) and phylogeography (the geography of lineages) in marine species. The idea that contemporary selective processes can cause fine‐scale spatial and temporal divergence underscores the need for a new emphasis on Darwinian fishery science.

Từ khóa


Tài liệu tham khảo

10.1111/j.1420-9101.2004.00788.x

10.1139/f81-203

10.1890/0012-9658(1999)080[2793:CSFRGI]2.0.CO;2

10.1111/j.1558-5646.1999.tb04531.x

10.1111/j.1365-294X.2004.02159.x

10.1890/04-0723

10.1111/j.0014-3820.2005.tb00977.x

10.1111/j.0014-3820.2004.tb00414.x

10.1111/j.1558-5646.1993.tb01221.x

10.1111/j.1558-5646.1982.tb05466.x

10.1139/f97-084

10.1007/PL00008848

10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2

10.1086/343878

10.1577/1548-8659(2002)131<0931:LHAOFA>2.0.CO;2

10.1038/nature03415

10.1577/1548-8659(1998)127<0598:VILGRA>2.0.CO;2

10.1139/f05-155

10.3354/meps301267

10.3354/meps009305

10.1038/nature02177

10.1577/1548-8659(1990)119<0416:TRBCFG>2.3.CO;2

10.1126/science.1074085

10.1007/BF00317554

10.1016/S0169-5347(00)89081-3

10.1139/cjfas-54-10-2401

10.1126/science.1122039

10.1111/j.0014-3820.2001.tb01301.x

10.1023/A:1011869215330

10.1007/s002270050062

10.1577/1548-8659(2001)130<0644:LGOJSS>2.0.CO;2

10.1126/science.179.4070.243

10.1126/science.165.3899.1228

10.1146/annurev.ge.10.120176.001345

10.1007/BF00321196

10.1111/j.1365-2427.2004.01279.x

10.1890/0012-9658(2003)084[0053:BARSIF]2.0.CO;2

10.1641/0006-3568(2003)053[0141:EAAABL]2.0.CO;2

10.1111/j.0014-3820.2005.tb00904.x

10.1111/j.1461-0248.2005.00812.x

10.1139/cjfas-54-1-190

10.1023/A:1013367100865

10.1111/j.1558-5646.1999.tb04550.x

10.1023/A:1013368628607

10.1111/j.0014-3820.2004.tb01606.x

10.1126/science.290.5491.516

10.1111/j.0014-3820.2002.tb01432.x

10.1098/rspb.2003.2600

10.1111/j.1095-8649.2000.tb00482.x

10.1080/00364827.2001.10420460

10.1111/j.1095-8649.2001.tb00143.x

10.1111/j.1749-7345.2001.tb00916.x

10.1111/j.1095-8649.2000.tb02106.x

10.1038/45538

10.1111/j.1461-0248.2004.00684.x

Kettlewell B, 1973, The Evolution of Melanism

10.1111/j.1461-0248.2004.00680.x

10.1890/01-0622

10.1023/A:1013375419520

10.1086/286054

Klahre L. (1998).Countergradient variation in egg production rate of the Atlantic silverside Menidia menidia. MS Thesis Stony Brook University Stony Brook NY.

10.1073/pnas.77.9.5385

10.1007/s00227-003-1104-x

10.1038/nature01029

Kristjansson B. K., 2002, Rapid divergence in a recently isolated population of threespine stickleback (Gasterosteus aculeatus L.), Evolutionary Ecology Research, 4, 659

10.1006/anbe.2001.1821

10.1111/j.1558-5646.1983.tb00236.x

10.1111/j.1558-5646.1996.tb04504.x

10.1577/1548-8659(2001)130<0367:PPOYOT>2.0.CO;2

10.3354/meps217093

10.1111/j.1365-2427.2004.01326.x

10.1007/BF02285264

10.1111/j.1558-5646.1999.tb05407.x

10.1111/j.1461-0248.2006.00950.x

10.1093/icb/43.3.439

10.1016/S0169-5347(02)02497-7

10.1515/9780691209418

10.1111/j.1095-8649.1996.tb01805.x

10.1071/MF03023

10.1046/j.1420-9101.2003.00510.x

10.1080/10236249309378855

10.1577/1548-8659(1994)123<0182:EORLAL>2.3.CO;2

10.1098/rspb.2005.3306

10.1111/j.0022-1112.2004.00433.x

McKay J. K., 2002, Adaptive population divergence: markers, QLT and traits, Trends in Ecology & Evolution, 17, 285, 10.1016/S0169-5347(02)02478-3

10.1046/j.1420-9101.2001.00348.x

10.1046/j.1365-2656.2002.00655.x

Moore J. S., 2005, Both selection and gene flow are necessary to explain adaptive divergence: evidence from clinal variation in stream stickleback, Evolutionary Ecology Research, 7, 871

10.1016/0169-5347(94)90057-4

10.1038/hdy.1987.113

10.1007/BF00627736

10.1139/z94-213

10.1111/j.0014-3820.2005.tb01747.x

10.1038/nature02430

10.1139/f05-065

10.1111/j.1420-9101.2004.00844.x

10.1111/j.0014-3820.2002.tb01388.x

10.1016/0169-5347(92)90144-Z

10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2

10.3354/meps296229

10.1111/j.1558-5646.1997.tb03661.x

10.1111/j.1095-8649.2001.tb00218.x

10.1577/1548-8659(1991)120<0058:SAGONF>2.3.CO;2

10.1577/1548-8659(1997)126<0549:LVILSS>2.3.CO;2

10.1002/(SICI)1097-010X(199809/10)282:1/2<71::AID-JEZ11>3.0.CO;2-J

10.1139/f00-204

10.1086/285855

10.1023/A:1013352109042

10.1126/science.275.5308.1934

10.1139/f81-213

10.3354/meps295229

10.1111/j.0014-3820.2002.tb00155.x

10.1098/rspb.2005.3463

10.1046/j.1365-294X.2003.01735.x

10.3354/meps267241

10.1073/pnas.96.24.13869

10.1007/s004420050112

10.2307/2390285

10.1139/f05-253

10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2

10.1093/genetics/75.4.733

10.1016/S0169-5347(02)00044-7

10.1007/s00227-005-1620-y

10.1111/j.1461-0248.2005.00874.x

10.1016/S0165-7836(99)00069-7

10.1038/45533

10.1126/science.291.5502.297

Thorrold S. R., 2002, Quantifying larval retention and connectivity in marine populations with artificial and natural markers, Bulletin of Marine Science, 70, 291

Trexler J. C., 2000, Can marine protected areas restore and conserve stock attributes of reef fishes?, Bulletin of Marine Science, 66, 853

10.1111/j.0014-3820.2000.tb00016.x

10.1086/physzool.39.1.30152765

10.1111/j.1469-1795.2000.tb00111.x

10.1111/j.1461-0248.2005.00858.x

Waples R. S, 1991, Pacific salmon, Oncorhynchus spp. and the definition of ‘species’ under the Endangered Species Act, Marine Fisheries Reviews, 53, 11

Waples R. S, 1995, Evolution and the Aquatic Ecosystem: Defining Unique Units in Population Conservation, 8

10.1093/jhered/89.5.438

10.1139/f92-242

10.1139/f04-119

10.1890/0012-9658(2002)083[1252:IVILVI]2.0.CO;2

10.1643/0045-8511(2006)2006[431:IAILVI]2.0.CO;2

10.1093/molbev/msi189

10.1163/156853995X00513