Spatial and Temporal Regulation of Condensins I and II in Mitotic Chromosome Assembly in Human Cells

Molecular Biology of the Cell - Tập 15 Số 7 - Trang 3296-3308 - 2004
Takao Ono1, Yuda Fang1, David L. Spector1, Tatsuya Hirano1
1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724

Tóm tắt

Two different condensin complexes make distinct contributions to metaphase chromosome architecture in vertebrate cells. We show here that the spatial and temporal distributions of condensins I and II are differentially regulated during the cell cycle in HeLa cells. Condensin II is predominantly nuclear during interphase and contributes to early stages of chromosome assembly in prophase. In contrast, condensin I is sequestered in the cytoplasm from interphase through prophase and gains access to chromosomes only after the nuclear envelope breaks down in prometaphase. The two complexes alternate along the axis of metaphase chromatids, but they are arranged into a unique geometry at the centromere/kinetochore region, with condensin II enriched near the inner kinetochore plate. This region-specific distribution of condensins I and II is severely disrupted upon depletion of Aurora B, although their association with the chromosome arm is not. Depletion of condensin subunits causes defects in kinetochore structure and function, leading to aberrant chromosome alignment and segregation. Our results suggest that the two condensin complexes act sequentially to initiate the assembly of mitotic chromosomes and that their specialized distribution at the centromere/kinetochore region may play a crucial role in placing sister kinetochores into the back-to-back orientation.

Từ khóa


Tài liệu tham khảo

Andrews, P.D., Knatko, E., Moore, W.J., and Swedlow, J.R. (2003). Mitotic mechanics: the auroras come into view.Curr. Opin. Cell Biol.15, 672-683.

Andrews, P.D., Ovechkina, Y., Morrice, N., Wagenbach, M., Duncan, K., Wordeman, L., and Swedlow, J.R. (2004). Aurora B regulates MCAK at the mitotic centromere.Dev. Cell6, 253-268.

Aono, N., Sutani, T., Tomonaga, T., Mochida, S., and Yanagida, M. (2002). Cnd2 has dual roles in mitotic condensation and interphase.Nature417, 197-202.

Ball, Jr., A.R., Schmiesing, J.A., Zhou, C., Gregson, H.C., Okada, Y., Doi, T., and Yokomori, K. (2002). Identification of a chromosome-targeting domain in the human condensin subunit CNAP1/hCAP-D2/Eg7.Mol. Cell. Biol.22, 5769-5781.

Bazett-Jones, D.P., Kimura, K., and Hirano, T. (2002). Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging.Mol. Cell9, 1183-1190.

10.1091/mbc.01-05-0264

Bhat, M.A., Philp, A.V., Glover, D.M., and Bellen, H.J. (1996). Chromatid segregation at anaphase requires the barren product, a novel chromosome associated protein that interacts with topoisomerase II.Cell87, 1103-1114.

Carmena, M., and Earnshaw, W.C. (2003). The cellular geography of aurora kinases.Nat. Rev. Mol. Cell. Biol.4, 842-854.

Chen, H., Hughs, D.D., Chan, T.A., Sedat, J.W., and Agard, D.A. (1996). IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications.J. Struct. Biol.116, 56-60.

Cimini, D., Fioravanti, D., Salmon, E.D., and Degrassi, F. (2002). Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells.J. Cell Sci.115, 507-515.

Cimini, D., Howell, B., Maddox, P., Khodjakov, A., Degrassi, F., and Salmon, E.D. (2001). Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells.J. Cell Biol.153, 517-527.

Coelho, P., Queiroz-Mechado, J., and Sunkel, C.E. (2003). Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis.J. Cell Sci.116, 4763-4776.

Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature411, 494-498.

Freeman, L., Aragon-Alcaide, L., and Strunnikov, A.V. (2000). The condensin complex governs chromosome condensation and mitotic transmission of rDNA.J. Cell Biol.149, 811-824.

Furuno, N., den Elzen, N., and Pines, J. (1999). Human cyclin A is required for mitosis until mid prophase.J. Cell Biol.147, 295-306.

Giet, R., and Glover, D.M. (2001). Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis.J. Cell Biol.152, 669-682.

Hagstrom, K.A., Holmes, V.F., Cozzarelli, N.R., and Meyer, B.J. (2002). C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis.Genes Dev.16, 729-742.

Hagstrom, K.A., and Meyer, B.J. (2003). Condensin and cohesin: more than chromosome compactor and glue.Nat. Rev. Genet.4, 520-534.

Hauf, S., Cole, R.W., LaTerra, S., Zimmer, C., Schnapp, G., Walter, R., Heckel, A., van Meel, J., Rieder, C.L., and Peters, J.M. (2003). The small molecule Hesperadin reveals a role for aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint.J. Cell Biol.161, 281-294.

Hirano, T. (2002). The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion and repair.Genes Dev.16, 399-414.

Hirano, T., Kobayashi, R., and Hirano, M. (1997). Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and aXenopushomolog of the Drosophila Barren protein.Cell89, 511-521.

Hirano, T., and Mitchison, T.J. (1994). A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro.Cell79, 449-458.

Hudson, D.F., Vagnarelli, P., Gassmann, R., and Earnshaw, W.C. (2003). Condensin is required for nonhistone protein assembly and structural integrity of vertebrate chromosomes.Dev. Cell5, 323-336.

Jessberger, R. (2002). The many functions of SMC proteins in chromosome dynamics.Nat. Rev. Mol. Cell. Biol.3, 767-778.

Kaitna, S., Pasierbek, P., Jantsch, M., Loidl, J., and Glotzer, M. (2002). The aurora B kinase, AIR-2, regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis.Curr. Biol.12, 798-812.

Kimura, K., Cuvier, O., and Hirano, T. (2001). Chromosome condensation by a human condensin complex inXenopusegg extracts.J. Biol. Chem.276, 5417-5420.

Kimura, K., and Hirano, T. (1997). ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation.Cell90, 625-634.

Kimura, K., and Hirano, T. (2000). Dual roles of the 11S regulatory subcomplex in condensin functions.Proc. Natl. Acad. Sci. USA97, 11972-11977.

Kimura, K., Hirano, M., Kobayashi, R., and Hirano, T. (1998). Phosphorylation and activation of 13S condensin by Cdc2 in vitro.Science282, 487-490.

Kunitoku, N., Sasayama, T., Marumoto, T., Zhang, D., Honda, S., Kobayashi, O., Hatakeyama, K., Ushio, Y., Saya, H., and Hirota, T. (2003). CENP-A phosphorylation by Aurora A in prophase is required for enrichment of Aurora B at inner centromeres and for kinetochore function.Dev. Cell5, 853-864.

Lavoie, B.D., Hogan, E., and Koshland, D. (2002). In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesin.J. Cell Biol.156, 805-815.

Lavoie, B.D., Hogan, E., and Koshland, D. (2004). In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding.Genes Dev.18, 76-87.

10.1091/mbc.11.4.1293

Levesque, A.A., and Compton, D.A. (2001). The chromokinesin kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles.J. Cell Biol.154, 1135-1146.

Lieb, J.D., Albrecht, M.R., Chuang, P.T., and Meyer, B.J. (1998). MIX-1, an essential component of the C. elegans mitotic machinery executes X-chromosome dosage compensation.Cell92, 265-277.

Losada, A., Hirano, M., and Hirano, T. (2002). Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis.Genes Dev.16, 3004-3016.

10.1091/mbc.01-09-0441

Machin, F., Paschos, K., Jarmuz, A., Torres-Rosell, J., Pade, C., and Aragon, L. (2004). Condensin regulates rDNA silencing by modulating nucleolar Sir2p.Curr. Biol.14, 125-130.

Mayer, T.U., Kapoor, T.M., Haggarty, S.J., King, R.W., Shchreiber, S.L., and Mitchison, T.J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen.Science286, 971-974.

Morrison, C., Henzing, A.J., Jensen, O.N., Osheroff, N., Dodson, H., Kandels-Lewis, S.E., Adams, R.R., and Earnshaw, W.C. (2002). Proteomitc analysis of human metaphase chromosomes reveals topoisomerase II α as an Aurora B substrate.Nucleic Acids Res.30, 5318-5327.

Murata-Hori, M., and Wang, Y.L. (2002). The kinase activity of Aurora B is required for kinetochore-microtubule interactions during mitosis.Curr. Biol.12, 894-899.

Muro, Y., Sugimoto, K., Okazaki, T., and Ohashi, M. (1990). The heterogeneity of anti-centromere antibodies in immunoblotting analysis.J. Rheumatol.17, 1042-1047.

Nasmyth, K. (2002). Segregating sister genomes: the molecular biology of chromosome separation.Science297, 559-565.

Neuwald, A.F., and Hirano, T. (2000). HEAT repeats associated with condensins, cohesins and other chromosome-related complexes.Genome Res.10, 1445-1452.

Ono, T., Losada, A., Hirano, M., Myers, M.P., Neuwald, A.F., and Hirano, T. (2003). Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells.Cell115, 109-121.

10.1091/mbc.11.4.1305

Palmer, D.K., O'Day, K., Trong, H.L., Charbonneau, H., and Margolis, R.L. (1991). Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone.Proc. Natl. Acad. Sci. USA88, 3734-3738.

Pines, J., and Hunter, T. (1991). Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport.J. Cell Biol.115, 1-17.

Pines, J., and Rieder, C.L. (2001). Re-staging mitosis: a contemporary view of mitotic progression.Nat. Cell Biol.3, E3-E6.

Rieder, C.L., and Cole, R.W. (1998). Entry into mitosis in vertebrate somatic cells is guarded by a chromosome damage checkpoint that reverses the cell cycle when triggered during early but not late prophase.J. Cell Biol.142, 1013-1022.

Saitoh, N., Goldberg, I.G., Wood, E.R., and Earnshaw, W.C. (1994). ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure.J. Cell Biol.127, 303-318.

Saka, Y., Sutani, T., Yamashita, Y., Saitoh, S., Takeuchi, M., Nakaseko, Y., and Yanagida, M. (1994). Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis.EMBO J.13, 4938-4952.

Schleiffer, A., Kaitna, S., Maurer-Stroh, S., Glotzer, M., Nasmyth, K., and Eisenhaber, F. (2003). Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners.Mol. Cell11, 571-575.

Schmiesing, J.A., Gregson, H.C., Zhou, S., and Yokomori, K. (2000). A human condensin complex containing hCAP-C-hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation.Mol. Cell. Biol.20, 6996-7006.

Somma, M.P., Fasulo, B., Siriaco, G., and Centi, G. (2003). Chromosome condensation defects in barren RNA-interfered Drosophila cells.Genetics165, 1607-1611.

Stear, J.H., and Roth, M.B. (2002). Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment.Genes Dev.16, 1498-1508.

Steffensen, S., Coelho, P.A., Cobbe, N., Vass, S., Costa, M., Hassan, B., Prokopenko, S.N., Bellen, H., Heck, M.M.S., and Sunkel, C.E. (2001). A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis.Curr. Biol.11, 295-307.

Strunnikov, A.V., Hogan, E., and Koshland, D. (1995). SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family.Genes Dev.9, 587-599.

Sutani, T., Yuasa, T., Tomonaga, T., Dohmae, N., Takio, K., and Yanagida, M. (1999). Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and cdc2 phosphorylation of Cut3/SMC4.Genes Dev.13, 2271-2283.

Swedlow, J.R., and Hirano, T. (2003). The making of the mitotic chromosome: modern insights into classical questions.Mol. Cell11, 557-569.

Wignall, S.M., Deehan, R., Maresca, T.J., and Heald, R. (2003). The condensin complex is required for proper spindle assembly and chromosome segregation inXenopusegg extracts.J. Cell Biol.161, 1041-1051.

Yen, T.J., Compton, D.A., Wise, D., Zinkowski, R.P., Brinkley, B.R., Earnshaw, W.C., and Cleveland, D.W. (1991). CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase.EMBO J.10, 1245-1254.

Yeong, F.M.et al. (2003). Identification of a subunit of a novel kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A.Curr. Biol.13, 2058-2064.

Zeitlin, S.G., Shelby, R.D., and Sullivan, K.F. (2001). CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis.J. Cell Biol.155, 1147-1157.