Phân bố không gian và đánh giá rủi ro sinh thái của các radionuclide tự nhiên và các nguyên tố vi lượng trong đất nông nghiệp khu vực Đông Bắc thung lũng Nile, Ai Cập

Water, Air, and Soil Pollution - Tập 231 - Trang 1-24 - 2020
Mohamed H. E. Monged1, Hanan B. Hassan1, Salah A. El-Sayed1
1Department of Environment and Siting, Egyptian Nuclear and Radiological Regulatory Authority (ENRRA), Nasr City, Egypt

Tóm tắt

Được biết đến với độ màu mỡ nông nghiệp, đất của thung lũng Nile ở Ai Cập đã bị xuống cấp do quá trình đô thị hóa nhanh chóng và gia tăng hoạt động công nghiệp trong những năm gần đây. Chất lượng đất nông nghiệp và các mối nguy về sức khỏe bức xạ liên quan đến công nhân nông nghiệp ở khu vực Đông Bắc thung lũng Nile đã được đánh giá dựa trên phân tích kim loại vi lượng (Hg, Cd, Zn, Pb, Cu, Mn và Fe) và đo lường radionuclide tự nhiên (238U, 226Ra, 232Th, 40K và 210Pb) của hai mươi mẫu đất. Kết quả cho thấy rằng đất nông nghiệp có nồng độ các nguyên tố vi lượng thấp hơn mức trung bình thế giới. Tuy nhiên, một sự phong phú đáng kể về hàm lượng Cd và Cu đã được quan sát ở một số địa điểm đất. Sự phong phú ở một số nguyên tố vi lượng, đặc biệt là kim loại Cd, được cho là do tác động của các yếu tố tự nhiên và con người, bao gồm sự xuất hiện và phân bố của cặn silty và đất sét, việc sử dụng chính thức nước thải đô thị và thuốc trừ sâu, việc thiêu hủy rác thải nông nghiệp, và phát thải từ các nhà máy gạch và nhà máy điện nhiệt chạy bằng mazut quanh khu vực. Các chỉ số ô nhiễm và rủi ro sinh thái được ước tính cho thấy rằng một số loại đất trong khu vực không bị ô nhiễm với các nguyên tố vi lượng; trong khi đó, một số loại đất khác được phân loại là “ô nhiễm vừa phải” đến “ô nhiễm”. Các kết quả từ các phép đo bức xạ cho thấy rằng nồng độ hoạt động của các radionuclide được điều tra cũng thấp hơn mức hoạt động trung vị thế giới của đất. Tổng liều hiệu quả hàng năm từ các con đường phơi nhiễm khác nhau đã được tính toán. Các giá trị ước tính rủi ro ung thư suốt đời cho công nhân nông nghiệp cao hơn rất nhiều so với mức trung bình thế giới của đất. Điều này ngụ ý rằng có khả năng cao gây ra ung thư trong suốt quãng đời của nông dân trong khu vực nghiên cứu.

Từ khóa


Tài liệu tham khảo

Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soils of urban areas. Water, Air, and Soil Pollution, 213(1), 121–143. https://doi.org/10.1007/s11270-010-0372-6. ATSDR. Agency for Toxic Substances and Disease Registry (2012). Toxicological profile for cadmium. https://www.atsdr.cdc.gov/ToxProfiles/tp5.pdf. accessed 10 April 2020. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48, 87–95. https://doi.org/10.1097/00004032-198501000-00007. Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2006). The influence of a large city on some soil properties and metals content. Science of the Total Environment, 356(1–3), 154. Chlopecka, A. (1993). Forms of trace metals from inorganic sources in soils and amounts found in spring barley. Water, Air, and Soil Pollution, 69, 127. Chon, H. T., Cho, C. H., Kim, K. W., & Moon, H. S. (1996). The occurrence and dispersion of potentially toxic elements in areas covered with black shale’s and slates in Korea. Applied Geochemistry, 11, 69–76. CONOCO. (1987). Geological map of Egypt, scale 1:500000, sheet No. N. H. 36 SW Beni Suef. The Egyptian General Petroleum Corporation. Currie, L. A. (1968). Limits for qualitative detection and quantitative determination, application to radioactivity. Analytical Chemistry, 40(3), 586–593. Delang, C. O. (2017). Causes and distribution of soil pollution in China. Environmental and Socio-Economic Studies, 5, 1–17. Dragović, S., Gajić, B., Dragović, R., Janković-Mandić, L., Slavković-Beškoski, L., Mihailović, N., Momčilović, M., & Ćujić, M. (2012). Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia. Journal of Environmental Monitoring, 14(1), 127–137. https://doi.org/10.1039/C1EM10457H. DRC, Desert Research Center. (2005). Egyptian National Action Program to combat desertification (p. 118). Cairo: Ministry of Agriculture & Land, Reclamation, Desert Research Center. Elfaki, J. T., Gafer, M. A., Sulieman, M. M., & Ali, M. E. (2016). Assessment of calcimetric and titrimetric methods for calcium carbonate estimation of five soil types in Central Sudan. Journal of Geoscience and Environment Protection, 4, 120–127. https://doi.org/10.4236/gep.2016.41014. El-Sayed, S. A., Morsy, S. M., & Zakaria, K. M. (2018). Recharge sources and geochemical evolution of groundwater in the quaternary aquifer at Atfih area, the northeastern Nile Valley, Egypt. Journal of African Earth Sciences, 142, 82–92. Eriksson, J.E. (2001). Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertilizers, precipitation and in oil and crops. Swedish EPA. Rep 5159. Stockholm. Evangelou, V. P. (1998). Environmental soil and water chemistry. New York: Wiley. Ewers, U. (1991). Standards, guidelines and legislative regulations concerning metals and their compounds. In E. Merian (Ed.), Metals and their compounds in the environment: occurrence, analysis and biological relevance (pp. 458–468). Weinheim: VCH. FAO, Food and Agriculture Organisation. (1988). Salt-affected soils and their management. FAO soils bull. 39. Rome: FAO 131pp. FAO/WHO (Codex Alimentarius Commission). (2001). Food additives and contaminants. Joint FAO/WHO food standards program: ALINORM, 1(12A), 1–289. Forkapic, S., Vasin, J., Bikit, I., Mrdja, D., Bikit, K., & Milić, S. (2017). Correlations between soil characteristics and radioactivity content of Vojvodina soil. Journal of Environmental Radioactivity, 166, 104–111. https://doi.org/10.1016/j.jenvrad.2016.04.003. Förstner, U. (1990). Contaminated sediments: lecture notes in earth science. Berlin: Springer-Verlag. Gad, A., Saleh, A., & Khalifa, M. (2019). Assessment of natural radionuclides and related occupational risk in agricultural soil, southeastern Nile Delta, Egypt. Arabian Journal of Geosciences, 12, 188. https://doi.org/10.1007/s12517-019-4356-6. Gong, M., Wu, L., Bi, X. Y., Ren, L. M., Wang, L., Ma, Z. D., Bao, Z. Y., & Li, Z. G. (2010). Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban-rural topsoils in Wuhan, central China. Environmental Geochemistry and Health, 32, 59–72. Guan, Y., Shao, C., & Ju, M. (2014). Heavy metal contamination assessment and partition for industrial and mining gathering areas. International Journal of Environmental Research and Public Health, 11(7), 7286–7303. https://doi.org/10.3390/ijerph110707286. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. a sedimentological approach. Water Research, 14(8), 975–1001. ICRP. (1990). Recommendations of the international commission on radiological protection, in ICRP publication 60. Oxford: Pergamon Press Ann ICRP. ICRP. (1996). Age-dependent doses to the members of the public from intake of radionuclides—Part 5 compilation of ingestion and inhalation coefficients, in ICRP publication 72. Oxford: Pergamon Press Ann ICRP. Inigo-Valan, I., Vijayalakshmi, I., Mathiyarasu, R., Sridhar, S. G. D., Narayanan, V., & Stephen, A. (2018). Investigation of natural background radiation of sediments in Rameswaram Island, Tamil Nadu, India. Arabian Journal of Geosciences, 11, 762. https://doi.org/10.1007/s12517-018-4125-y. Ji, Y., Feng, Y., Wu, J., Zhu, T., Bai, Z., & Duan, C. (2008). Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 20(5), 571–578. Jibiri, N. N., Alausa, S. K., & Farai, I. P. (2009). Assessment of external and internal doses due to farming in high background radiation areas in old tin mining localities in Jos-plateau, Nigeria. Radioprotection, 44(2), 139–151. https://doi.org/10.1051/radiopro/2009001. Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press. Kabata-Pendias, A., & Pendias, H. (1979). Trace elements in the biological environment. Warsaw: Wyd. Geol.. Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., & Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe Riverprotected area, China. Chemosphere, 175(Supplement C), 473–481. Keshavarzi, A., & Kumar, V. (2019). Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geology, Ecology, and Landscapes, 4. https://doi.org/10.1080/24749508.2019.1587588. Khalifa, M., & Gad, A. (2018). Assessment of heavy metals contamination in agricultural soil of southwestern Nile Delta, Egypt. Soil and Sediment Contamination: An International Journal, 27(7), 619–642. https://doi.org/10.1080/15320383.2018.1498445. Kingeston, H.M.. Walter, P.J., Chalk, S.J., Lorentzen, E.M., and Link, D.D. (1997): Environmental microwave sample preparation: fundamentals, methods, and applications. In: Microwave-enhanced chemistry: fundamentals, sample preparation, and applications. Washington, DC: American Chemical Society. Korany, E. A., El-Ghazawi, M. M., & Faiad, B. J. (1997). Hydrographic analysis and hydrogeologic bearing of Wadi El-Atfihy, eastern Desert, Egypt-a case study of an ephemeral stream. Ain Shams Science Bulletin, 35, 73–88. Lewin, V. H., & Beckett, P. H. T. (1980). Monitoring heavy metal accumulation in agricultural soils treated with sewage sludge. Effluent and water treatment journal, 1, 217. Lim, H. S., Lee, J. S., Chon, H. T., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96(2–3), 223–230. https://doi.org/10.1016/j.gexplo.2007.04.008. Liu, R., Wang, M., Chen, W., & Peng, C. (2016). Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environmental Pollution, 210, 174–181. Loska, K., Wiechula, D., Barska, B., Cebula, E., & Chojnecka, A. (2003). Assessment of arsenic enrichment of cultivated soils in southern Poland. Polish Journal of Environmental Studies, 12(2), 187. Loska, K., Wiechula, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30, 159–165. Lu, S. G., & Bai, S. Q. (2010). Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: relationship with different land uses. Environmental Earth Sciences, 60(7), 1481–1490. Monged, M. H. E., Hussein, M. T., & Khater, A. E. M. (2018). Elemental and radiological aspects of geothermal springs and nearby soil and sediment of Al-Lith area: concentration and risk assessment. Environmental Earth Sciences, 77, 427–444. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geochemical Journal, 2, 108–118. Mungai, T. M., Owino, A. A., Makokha, V. A., Gao, Y., Yan, X., & Wang, J. (2016). Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa. Environmental Science and Pollution Research, 23, 18533–18541. https://doi.org/10.1007/s11356-016-7042-1. Mustapha, A. O., Mbuzukongira, P., & Mangala, M. J. (2007). Occupational radiation exposures of artisans mining columbite-tantalite in the eastern Democratic Republic of Congo. Journal of Radiological Protection, 27(2), 187–195. https://doi.org/10.1088/0952-4746/27/2/005. NYSERDA, New York State Energy Research and Development Authority. (2010). Determination of sulfur and toxic metals content of distillates and residual oil in the state of New York. Report number 10-31. Prepared by the Northeast States for Coordinated Air Use Management (NESCAUM). nyserda.ny.gov/publications. NZGS (NZ Geotechnical Society) (2005). Field description of soil and rock, Guideline for the field classification and description of soil and rock for engineering purposes. New Zeland Geotechnical Society Inc. Publications 2005, 38p. www.nzgeotechsoc.org.nz. Rahman, M. S., Saha, N., & Molla, A. H. (2014). Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environmental Earth Sciences, 71(5), 2293–2308. https://doi.org/10.1007/s12665-013-2631-5. Rehman, I. U., Ishaq, M., Ali, L., Khan, S., Ahmad, I., & Din, I. U. (2018). Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicology and Environmental Safety, 154, 127–136. Sahmoun, A., Case, L., Jackson, S. A., & Schwartz, G. G. (2005). Cadmium and prostate cancer: a critical epidemiological analysis. Cancer Investigation, 23, 256–263. https://doi.org/10.1081/cnv-200055968. Said, R. (1962). The geology of Egypt (p. 377). Amsterdam: Elsevier Publishing Company. Said, R. (1981). The geological evolution of the Nile River (p. 151). New York: Springer Verlag. Said, R. (1990). The geology of Egypt (p. 734). Broodfield: Bakema Rotterdam. Saleh, A. S. (1990). Geomorphological effects of a torrential flood in wadi El-atfihy, the eastern desert of Egypt. The Bulletin of the Egyptian Geographical Society, 63, 99–128. Soltani, N., Keshavarzi, B., Moore, F., Sorooshian, A., & Ahmadi, M. R. (2017). Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E.-Gohar iron mine, a case study in Iran. Environmental Science and Pollution Research, 24, 18798–18816. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627. Tadesse, A. W., Gereslassie, T., Xu, Q., Tang, X., & Wang, J. (2018). Concentrations, distribution, sources and ecological risk assessment of trace elements in soils from Wuhan, Central China. International Journal of Environmental Research and Public Health, 15, 2873. Takeda, A., Kimura, K., & Yamasaki, S. I. (2004). Analysis of 57 elements in Japanese soils, with special reference to soil group, and agricultural use. Geoderma, 119, 291–307. Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hindiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity, 100, 49–53. https://doi.org/10.1016/j.jenvrad.2008.10.012. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffey, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoländer Wissenschaftliche Meeresuntersuchungen, 33, 566–575. UNSCEAR. (2000). United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR. (2008). Sources and effects of ionizing radiation. Report to the general assembly with scientific annexes. New York: United Nations. USEPA. (2011). Exposure factors hand book. Washington DC: National Centre for Environmental Assessment Office of Research and Development. Wang, M., & Zhang, H. (2018). Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. International Journal of Environmental Research and Public Health, 15, 1064. Watson, D. F. (1992). Contouring: a guide to the analysis and display of spatial data. Oxford: Pergamon. Xhixha, G., Alberi, M., Baldoncini, M., Bode, K., Bylyku, E., Cfarku, F., Callegari, I., Hasani, F., Landsberger, S., Mantovani, F., Rodriguez, E., Shala, F., Strati, V., & Kaçeli, M. X. (2015). Calibration of HPGe detectors using certified reference materials of natural origin. Journal of Radioanalytical and Nuclear Chemistry, 307, 1507–1517. Xu, Z. Q., Ni, S. J., Tuo, X. G., & Zhang, C. J. (2008). Calculation of heavy metals toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science and Technology, 31, 112–115. Xu, Y., Liang, X., Xu, Y., Qin, X., Huang, Q., & Wang, L. (2017). Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere, 27, 193–204.