Sp1 trong tế bào hình sao đóng vai trò quan trọng đối với sự phát triển của nhú thần kinh và hình thành synap

Molecular Neurobiology - Tập 57 - Trang 261-277 - 2019
Chia-Yang Hung1,2, Tsung-I Hsu2,3, Jian-Ying Chuang3,4, Tsung-Ping Su5, Wen-Chang Chang2, Jan-Jong Hung1,2
1Department of Biotechnology and Bioindustry Science, National Cheng-Kung University, Tainan, Taiwan
2Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
3The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
4Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
5Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, USA

Tóm tắt

Trong nghiên cứu này, chúng tôi phát hiện rằng Sp1 được biểu hiện cao trong tế bào hình sao, điều này ngụ ý rằng Sp1 có thể đóng vai trò quan trọng trong chức năng của tế bào hình sao. Chuột knockout có điều kiện Sp1/GFAP-Cre-ERT2 đã được tạo ra để nghiên cứu vai trò của Sp1 trong tế bào hình sao. Việc knockout Sp1 trong tế bào hình sao đã làm thay đổi hình dạng của tế bào hình sao và giảm biểu hiện GFAP trong vỏ não và hồi hải mã nhưng không ảnh hưởng đến khả năng sống sót của tế bào. Sự mất đi của Sp1 trong tế bào hình sao đã làm giảm số lượng neuron trong vỏ não và hồi hải mã. Dịch trung gian từ tế bào hình sao nguyên phát với knockout Sp1 đã làm gián đoạn sự phát triển nhánh của neuron và hình thành synap, dẫn đến các hành vi học tập, trí nhớ và vận động bất thường. Việc knockout Sp1 trong tế bào hình sao đã làm thay đổi biểu hiện gen, bao gồm giảm biểu hiện của thụ thể toll-like 2 và Cfb và tăng biểu hiện của C1q và C4Bp, từ đó ảnh hưởng đến sự phát triển nhú thần kinh và hình thành synap, dẫn đến chức năng neuron bị rối loạn. Nghiên cứu những quy định gen này có thể có lợi cho việc hiểu biết về sự phát triển của neuron và phòng ngừa chấn thương não.

Từ khóa

#Sp1 #tế bào hình sao #sự phát triển của nhú thần kinh #hình thành synap #chức năng neuron

Tài liệu tham khảo

Li L, Davie JR (2010) The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat 192(5):275–283. https://doi.org/10.1016/j.aanat.S0940-9602(10)00116-0 Wang SA, Chuang JY, Yeh SH, Wang YT, Liu YW, Chang WC, Hung JJ (2009) Heat shock protein 90 is important for Sp1 stability during mitosis. J Mol Biol 387(5):1106–1119. https://doi.org/10.1016/j.jmb.2009.02.040 Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J, Chiocca S, Suske G et al (2003) The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol 23(8):2669–2679 Opitz OG, Rustgi AK (2000) Interaction between Sp1 and cell cycle regulatory proteins is important in transactivation of a differentiation-related gene. Cancer Res 60(11):2825–2830 Wei C, Zhang W, Zhou Q, Zhao C, Du Y, Yan Q, Li Z, Miao J (2016) Mithramycin A alleviates cognitive deficits and reduces neuropathology in a transgenic mouse model of Alzheimer’s disease. Neurochem Res 41(8):1924–1938. https://doi.org/10.1007/s11064-016-1903-310.1007/s11064-016-1903-3 Wang J, Song W (2016) Regulation of LRRK2 promoter activity and gene expression by Sp1. Mol Brain 9:33. https://doi.org/10.1186/s13041-016-0215-510.1186/s13041-016-0215-5 Citron BA, Saykally JN, Cao C, Dennis JS, Runfeldt M, Arendash GW (2015) Transcription factor Sp1 inhibition, memory, and cytokines in a mouse model of Alzheimer’s disease. Am J Neurodegener Dis 4(2):40–48 Chuang JY, Kao TJ, Lin SH, Wu AC, Lee PT, Su TP, Yeh SH, Lee YC et al (2017) Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury. Redox Biol 11:135–143. https://doi.org/10.1016/j.redox.2016.11.012 Miras-Portugal MT, Gomez-Villafuertes R, Gualix J, Diaz-Hernandez JI, Artalejo AR, Ortega F, Delicado EG, Perez-Sen R (2016) Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology 104:243–254. https://doi.org/10.1016/j.neuropharm.2015.09.002S0028-3908(15)30094-0 Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA et al (2006) Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 12(4):433–440. https://doi.org/10.1038/nm1390 Yeh SH, Yang WB, Gean PW, Hsu CY, Tseng JT, Su TP, Chang WC, Hung JJ (2011) Translational and transcriptional control of Sp1 against ischaemia through a hydrogen peroxide-activated internal ribosomal entry site pathway. Nucleic Acids Res 39(13):5412–5423. https://doi.org/10.1093/nar/gkr161 Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468(7321):223–231. https://doi.org/10.1038/nature09612nature09612 Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9):a020370. https://doi.org/10.1101/cshperspect.a020370 Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52(1–2):142–154. https://doi.org/10.1016/j.neuint.2007.06.005 Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031. https://doi.org/10.1152/physrev.00049.2005 Allen NJ, Eroglu C (2017) Cell biology of astrocyte-synapse interactions. Neuron 96(3):697–708. https://doi.org/10.1016/j.neuron.2017.09.056 Li B, Chen P, Qu J, Shi L, Zhuang W, Fu J, Li J, Zhang X et al (2014) Activation of LTBP3 gene by a long noncoding RNA (lncRNA) MALAT1 transcript in mesenchymal stem cells from multiple myeloma. J Biol Chem 289(42):29365–29375. https://doi.org/10.1074/jbc.M114.572693M114.572693 Yang WB, Chen PH, Hsu TS, Fu TF, Su WC, Liaw H, Chang WC, Hung JJ (2014) Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget 5(3):740–753. https://doi.org/10.18632/oncotarget.1608 Kruger I, Vollmer M, Simmons DG, Elsasser HP, Philipsen S, Suske G (2007) Sp1/Sp3 compound heterozygous mice are not viable: impaired erythropoiesis and severe placental defects. Dev Dyn 236(8):2235–2244. https://doi.org/10.1002/dvdy.21222 Marin M, Karis A, Visser P, Grosveld F, Philipsen S (1997) Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 89(4):619–628 Michinaga S, Ishida A, Takeuchi R, Koyama Y (2013) Endothelin-1 stimulates cyclin D1 expression in rat cultured astrocytes via activation of Sp1. Neurochem Int 63(1):25–34. https://doi.org/10.1016/j.neuint.2013.04.004 Jin M, Ande A, Kumar A, Kumar S (2013) Regulation of cytochrome P450 2e1 expression by ethanol: role of oxidative stress-mediated pkc/jnk/sp1 pathway. Cell Death Dis 4:e554. https://doi.org/10.1038/cddis.2013.78cddis201378 Loeffler S, Fayard B, Weis J, Weissenberger J (2005) Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 115(2):202–213. https://doi.org/10.1002/ijc.20871 Choi SS, Lee HJ, Lim I, Satoh J, Kim SU (2014) Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9(4):e92325. https://doi.org/10.1371/journal.pone.0092325PONE-D-13-48616 Jakel S, Dimou L (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci 11:24. https://doi.org/10.3389/fncel.2017.00024 Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, Yamakawa S, Kritskiy O et al (2017) The transcription factor Sp3 cooperates with HDAC2 to regulate synaptic function and plasticity in neurons. Cell Rep 20(6):1319–1334. https://doi.org/10.1016/j.celrep.2017.07.044 Ishimaru N, Tabuchi A, Hara D, Hayashi H, Sugimoto T, Yasuhara M, Shiota J, Tsuda M (2007) Regulation of neurotrophin-3 gene transcription by Sp3 and Sp4 in neurons. J Neurochem 100(2):520–531. https://doi.org/10.1111/j.1471-4159.2006.04216.x Mao XR, Moerman-Herzog AM, Chen Y, Barger SW (2009) Unique aspects of transcriptional regulation in neurons—nuances in NFkappaB and Sp1-related factors. J Neuroinflammation 6:16. https://doi.org/10.1186/1742-2094-6-16 Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J et al (2015) NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85(1):101–115. https://doi.org/10.1016/j.neuron.2014.11.018 Shastri A, Bonifati DM, Kishore U (2013) Innate immunity and neuroinflammation. Mediators Inflamm 2013:342931. https://doi.org/10.1155/2013/342931 Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59(2):278–292. https://doi.org/10.1016/j.brainresrev.2008.09.001S0165-0173(08)00103-3 Gesuete R, Kohama SG, Stenzel-Poore MP (2014) Toll-like receptors and ischemic brain injury. J Neuropathol Exp Neurol 73(5):378–386. https://doi.org/10.1097/NEN.0000000000000068 Jacob A, Alexander JJ (2014) Complement and blood-brain barrier integrity. Mol Immunol 61(2):149–152. https://doi.org/10.1016/j.molimm.2014.06.039S0161-5890(14)00170-9 Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa AT (2010) The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res 59(11):897–905. https://doi.org/10.1007/s00011-010-0220-6 Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64(1):93–109. https://doi.org/10.1016/j.neuron.2009.09.001S0896-6273(09)00678-3 Veerhuis R, Nielsen HM, Tenner AJ (2011) Complement in the brain. Mol Immunol 48(14):1592–1603. https://doi.org/10.1016/j.molimm.2011.04.003S0161-5890(11)00120-9 Fraser DA, Pisalyaput K, Tenner AJ (2010) C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem 112(3):733–743. https://doi.org/10.1111/j.1471-4159.2009.06494.xJNC6494 Tokudome K, Okumura T, Shimizu S, Mashimo T, Takizawa A, Serikawa T, Terada R, Ishihara S et al (2016) Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission. Sci Rep 6:27420. https://doi.org/10.1038/srep27420srep27420 Wood IC, Garriga M, Palmer CL, Pepitoni S, Buckley NJ (1999) Neuronal expression of the rat M1 muscarinic acetylcholine receptor gene is regulated by elements in the first exon. Biochem J 340(Pt 2):475–483 Lou XY, Ma JZ, Payne TJ, Beuten J, Crew KM, Li MD (2006) Gene-based analysis suggests association of the nicotinic acetylcholine receptor beta1 subunit (CHRNB1) and M1 muscarinic acetylcholine receptor (CHRM1) with vulnerability for nicotine dependence. Hum Genet 120(3):381–389. https://doi.org/10.1007/s00439-006-0229-7 Ma DQ, Whitehead PL, Menold MM, Martin ER, Ashley-Koch AE, Mei H, Ritchie MD, Delong GR et al (2005) Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77(3):377–388. https://doi.org/10.1086/433195 Greene ND, Copp AJ (2014) Neural tube defects. Annu Rev Neurosci 37:221–242. https://doi.org/10.1146/annurev-neuro-062012-170354 Kalashnikova E, Lorca RA, Kaur I, Barisone GA, Li B, Ishimaru T, Trimmer JS, Mohapatra DP et al (2010) SynDIG1: an activity-regulated, AMPA- receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65(1):80–93. https://doi.org/10.1016/j.neuron.2009.12.021S0896-6273(09)01011-3 Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi K, Murphy E, Robbins J (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112(22):3451–3461. https://doi.org/10.1161/CIRCULATIONAHA.105.572552 Garcia-Huerta P, Diaz-Hernandez M, Delicado EG, Pimentel-Santillana M, Miras-Portugal MT, Gomez-Villafuertes R (2012) The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem 287(53):44628–44644. https://doi.org/10.1074/jbc.M112.390971M112.390971 Paonessa F, Latifi S, Scarongella H, Cesca F, Benfenati F (2013) Specificity protein 1 (Sp1)-dependent activation of the synapsin I gene (SYN1) is modulated by RE1-silencing transcription factor (REST) and 5′-cytosine-phosphoguanine (CpG) methylation. J Biol Chem 288(5):3227–3239. https://doi.org/10.1074/jbc.M112.399782M112.399782 Boutillier S, Lannes B, Buee L, Delacourte A, Rouaux C, Mohr M, Bellocq JP, Sellal F et al (2007) Sp3 and sp4 transcription factor levels are increased in brains of patients with Alzheimer’s disease. Neurodegener Dis 4(6):413–423. https://doi.org/10.1159/000107701 Saia G, Lalonde J, Sun X, Ramos B, Gill G (2014) Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling. J Neurochem 129(4):743–752. https://doi.org/10.1111/jnc.12657 Ramos B, Gaudilliere B, Bonni A, Gill G (2007) Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation. Proc Natl Acad Sci U S A 104(23):9882–9887. https://doi.org/10.1073/pnas.0701946104 Aoyama T, Okamoto T, Fukiage K, Otsuka S, Furu M, Ito K, Jin Y, Ueda M et al (2010) Histone modifiers, YY1 and p300, regulate the expression of cartilage-specific gene, chondromodulin-I, in mesenchymal stem cells. J Biol Chem 285(39):29842–29850. https://doi.org/10.1074/jbc.M110.116319M110.116319 Yao YL, Yang WM, Seto E (2001) Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 21(17):5979–5991 Han JW, Ahn SH, Kim YK, Bae GU, Yoon JW, Hong S, Lee HY, Lee YW et al (2001) Activation of p21(WAF1/Cip1) transcription through Sp1 sites by histone deacetylase inhibitor apicidin: involvement of protein kinase C. J Biol Chem 276(45):42084–42090. https://doi.org/10.1074/jbc.M106688200M106688200 Billon N, Carlisi D, Datto MB, van Grunsven LA, Watt A, Wang XF, Rudkin BB (1999) Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene 18(18):2872–2882. https://doi.org/10.1038/sj.onc.1202712