Southward Migration of the Intertropical Convergence Zone Through the Holocene

American Association for the Advancement of Science (AAAS) - Tập 293 Số 5533 - Trang 1304-1308 - 2001
Gerald H. Haug1, Konrad A Hughen2, Daniel M. Sigman3, Larry C. Peterson4, Ursula Röhl5
1Department of Earth Sciences, Eidgenössische Technische Hochschule–Zentrum, CH-8092 Zürich, Switzerland.
2Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
3Department of Geosciences, Princeton University, Princeton, NJ 08544,#N#USA
4Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
5Fachbereich Geowissenschaften, Universität Bremen, D-28334 Bremen, Germany.

Tóm tắt

Titanium and iron concentration data from the anoxic Cariaco Basin, off the Venezuelan coast, can be used to infer variations in the hydrological cycle over northern South America during the past 14,000 years with subdecadal resolution. Following a dry Younger Dryas, a period of increased precipitation and riverine discharge occurred during the Holocene “thermal maximum.” Since ∼5400 years ago, a trend toward drier conditions is evident from the data, with high-amplitude fluctuations and precipitation minima during the time interval 3800 to 2800 years ago and during the “Little Ice Age.” These regional changes in precipitation are best explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ), potentially driven by Pacific-based climate variability. The Cariaco Basin record exhibits strong correlations with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global teleconnections among regional climates.

Từ khóa


Tài liệu tham khảo

Peterson L. C., Overpeck J. T., Kipp N. G., Imbrie J., Paleoceanography 6, 99 (1991).

10.1038/380051a0

10.1126/science.290.5498.1947

D. E. Black et al. Science 286 1709 (1999).

Hastenrath S., Greishar L., J. Geophys. Res. 98, 5093 (1993).

L. C. Peterson et al. Proc. ODP Sci. Res. 165 85 (2000).

M. Stuiver et al. Radiocarbon 40 1041 (1998).

Röhl U., Abrams L. J., Proc. ODP Sci. Res. 165, 191 (2000).

Yarincik K. M., Murray R. W., Peterson L. C., Paleoceanography 15, 210 (2000).

10.1126/science.241.4869.1043

10.1016/0277-3791(95)00066-6

D. Rind et al. Clim. Dyn. 1 33 (1986).

10.1126/science.288.5474.2198

H.-L. Lin et al. Paleoceanography 12 415 (1997).

D. A. Hodell et al. Nature 352 790 (1991).

J. P. Bradbury et al. Science 214 1299 (1981).

10.1038/342637a0

R. C. Thunell et al. Limnol. Oceanogr. 45 300 (2000).

P. A. Baker et al. Science 291 640 (2001).

10.1126/science.290.5500.2291

10.1016/0277-3791(91)90033-Q

10.1126/science.290.5500.2285

10.1126/science.288.5473.1997

K. E. Trenberth et al. J. Geophys. Res. 103 14291 (1998).

10.1029/1999PA000466

D. H. Sandweiss et al. Science 273 1531 (1996).

D. T. Rodbell et al. Science 283 516 (1999).

M. S. McGlone A. P. Kershaw V. Markgraf in El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation H. F. Diaz V. Markgraf Eds. (Cambridge Univ. Press Cambridge 1992) pp. 435–462.

E. R. Cook B. M. Buckley R. D. D'Arrigo

Peterson M. J., Clim. Dyn. 16, 79 (2000) .

Chang P., Ji L., Li H., Nature 385, 516 (1997).

K. R. Briffa et al. Clim. Dyn. 7 111 (1992).

S. R. O'Brien et al. Science 270 1962 (1995).

10.1126/science.1057759

See supplemental figure at Science Online (www.sciencemag.org/cgi/content/full/293/5533/1304/DC1).

Cane M., Clement A. C., Geophys. Monogr. 112, 373 (1999).

We thank D. Ariztegui M. Cane C. Charles A. Clement H. Cullen W. Curry D. Hodell T. Joyce L. Keigwin T. Stocker H. Thierstein D. Oppo G. Philander and two anonymous reviewers for discussions and helpful comments. We also thank M. Scherer for scanning electron microscopy (SEM) and x-ray results shown in Fig. 1 that arose from a class project at the University of Miami. Supported by the Deutsche Forschungsgemeinschaft and NSF.