Source-tracking of the Chinese Chikungunya viruses suggests that Indian subcontinent and Southeast Asia act as major hubs for the recent global spread of Chikungunya virus

Shaofu Qiu1, Jian Guo1, Peihan Li1, Peng Li1, Xinying Du1, Rongzhang Hao1, Chaojie Yang1, Qi Wang1, Hongbo Liu1, Haoran Zhang1, Sai Tian1, Hua Shi1, Liang Wen1, Daizhi An1, Xiaocui Yang2, Xiaoyuan An2, Ligui Wang1, Changjun Wang1, Hongbin Song1
1The Chinese PLA Center for Disease Control and Prevention, Beijing, China
2The Fourth People’s Hospital of Zunyi, Guizhou, China

Tóm tắt

Abstract Background Chikungunya fever, caused by the Chikungunya virus (CHIKV), has become a major global health concern, causing unexpected large outbreaks in Africa, Asia, Europe, and the Americas. CHIKV is not indigenous to China, and its origin in the country is poorly understood. In particular, there is limited understanding of the recent global spread of CHIKV in the context of the CHIKV epidemic. Methods Here we investigated a novel Chikungunya patient who came from Myanmar to China in August, 2019. Direct genome sequencing was performed via combined MinION sequencing and BGISEQ-500 sequencing. A complete CHIKV genome dataset, including 727 CHIKV genomes retrieved from GenBank and the genome sequenced in this study, was constructed. An updated and comprehensive phylogenetic analysis was conducted to understand the virus’s origin, evolution, transmission routes and genetic adaptation. Results All globally distributed CHIKV genomes were divided into West Africa, East/Central/South African and Asian genotypes. The genome sequenced in this study was located in the Indian Ocean lineage, and was closely related to a strain isolated from an Australian patient who returned from Bangladesh in 2017. A comprehensive phylogenetic analysis showed that the Chinese strains mainly originated from the Indian subcontinent and Southeast Asia. Further analyses indicated that the Indian subcontinent and Southeast Asia may act as major hubs for the recent global spread of CHIKV, leading to multiple outbreaks and epidemics. Moreover, we identified 179 distinct sites, including some undescribed sites in the structural and non-structural proteins, which exhibited apparent genetic variations associated with different CHIKV lineages. Conclusions Here we report a novel CHIKV isolate from a chikungunya patient who came from Myanmar to China in 2019, and summarize the source and evolution of Chinese CHIKV strains. Our present findings provide a better understanding of the recent global evolution of CHIKV, highlighting the urgent need for strengthened surveillance against viral diversity.

Từ khóa


Tài liệu tham khảo

Zeller H, Van Bortel W, Sudre B. Chikungunya: its history in africa and asia and its spread to new regions in 2013–2014. J Infect Dis. 2016;214:S436–40.

Wu D, Wu J, Zhang Q, Zhong H, Ke C, Deng X, Guan D, Li H, Zhang Y, Zhou H, et al. Chikungunya outbreak in Guangdong Province, China, 2010. Emerg Infect Dis. 2012;18:493–5.

Rossini G, Landini MP, Sambri V. Evolution and epidemiology of Chikungunya virus. Methods Mol Biol. 2016;1426:3–10.

Pan J, Fang C, Yan J, Yan H, Zhan B, Sun Y, Liu Y, Mao H, Cao G, Lv L, et al. Chikungunya fever outbreak, Zhejiang Province, China, 2017. Emerg Infect Dis. 2019;25:1589–91.

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.

Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

Tun MM, Thant KZ, Inoue S, Nabeshima T, Aoki K, Kyaw AK, Myint T, Tar T, Maung KT, Hayasaka D, Morita K. Detection of east/central/south African genotype of chikungunya virus in Myanmar, 2010. Emerg Infect Dis. 2014;20:1378–81.

Tanabe ELL, Tanabe ISB, Santos ECD, Marques J, Borges AA, Lima MC, Anderson L, Bassi EJ. Report of East-Central South African Chikungunya virus genotype during the 2016 outbreak in the Alagoas State, Brazil. Rev Inst Med Trop Sao Paulo. 2018;60:e19.

Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370:1840–6.

Diaz-Quinonez JA, Escobar-Escamilla N, Ortiz-Alcantara J, Vazquez-Pichardo M, de la Luz T-R, Nunez-Leon A, Torres-Longoria B, Lopez-Martinez I, Ruiz-Matus C, Kuri-Morales P, Ramirez-Gonzalez JE. Identification of Asian genotype of chikungunya virus isolated in Mexico. Virus Genes. 2016;52:127–9.

Chen R, Puri V, Fedorova N, Lin D, Hari KL, Jain R, Rodas JD, Das SR, Shabman RS, Weaver SC. Comprehensive genome scale phylogenetic study provides new insights on the global expansion of Chikungunya virus. J Virol. 2016;90:10600–11.

Dutta SK, Bhattacharya T, Tripathi A. Chikungunya virus: genomic microevolution in Eastern India and its in-silico epitope prediction. 3 Biotech. 2018;8:318.

Shi J, Su Z, Fan Z, Wang J, Liu S, Zhang B, Wei H, Jehan S, Jamil N, Shen S, Deng F. Extensive evolution analysis of the global chikungunya virus strains revealed the origination of CHIKV epidemics in Pakistan in 2016. Virol Sin. 2017;32:520–32.

Zhang X, Huang Y, Wang M, Yang F, Wu C, Huang D, Xiong L, Wan C, Cheng J, Zhang R. Differences in genome characters and cell tropisms between two chikungunya isolates of Asian lineage and Indian Ocean lineage. Virol J. 2018;15:130.