Source model and scalp topography of pattern reversal visual evoked potentials to altitudinal stimuli suggest that infoldings of calcarine fissure are not part of VEP generators

Marco Onofrj1, Tommaso Fulgente1, Astrid Thomas1, Goffredo Malatesta1, Marco Peresson2, Tiziana Locatelli3, Vittorio Martinelli3, Giancarlo Comi3
1Department of Neurology, Institute of Neurology and Behavioral Sciences, State University of Chieti, Chieti, Italy
2Institute of Biophysics, University of Chieti, Chieti, Italy
3Department of Neurology, Milan, Italy

Tóm tắt

Visual evoked potentials (VEPs) to pattern reversal vertical bar stimuli were recorded from 19 scalp, 2 zygomatic and 3 inion derivations referenced to digitally linked earlobes in 50 controls. 1, 2 and 4 cycles per degree (cpd) patterns were presented as full field (FF) stimuli, on upper and lower hemifields (UHF-LHF), upper and lower quadrants and with the occlusion of central and peripheral UHF and LHF. VEPs to octant stimuli were also recorded with 2 cpd patterns. N1, P1 and N2 components were recorded from posterior and inion derivations with FF stimuli, from posterior derivations with LHF stimuli, only from inion leads with UHF stimuli, from derivations ipsilateral to stimuli with quadrants and octants, and from midline derivations only with lower quadrants. Polarity inverted sequences (iPl-iNl-iP2) were recorded from the other scalp derivations, with similar latency and spatial frequency sensitivity as N1-P1-N2. The orientation of Equivalent Dipoles (ED) was orthogonal with surface coordinates of mesial and occipito-polar calcarine cortex, measured on Magnetic Resonance Imaging. A model of VEP generators is proposed, suggesting that the VEP sequence is elicited only in mesial and occipito-polar surfaces of calcarine cortex.

Từ khóa


Tài liệu tham khảo

Aine, C.J., Bodis-Wollner, I. and George, J.S. Generators of visually evoked neuromagnetic responses. Spatial-frequency segregation and evidence for multiple sources. Adv. NeuroL, 1990, 54: 141–155. Barrett, G., Blumhardt, L.D., Halliday, A.M., Halliday, E. and Kriss, A. A paradox in the lateralization of the visual evoked response. Nature, 1976, 261: 253–255. Belliveau, J.W., Kennedy, D.N., McKinstry, R. C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S., Vevea, J.M., Brady, T.J. and Rosen, B.R. Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 1991, 254: 716–719. Blumhardt, L.D., Barrett, G., Halliday, A.M. and Kriss, A. The effect of experimental “SCOTOMATA” on the ipsilateral and contralateral responses to pattern reversal in one HF. Electroenceph. Clin. Neurophysiol., 1978, 45: 376–392. Blumhardt, L.D. and Halliday, A.M. Hemisphere contributions to the composition of the pattern-evoked potential waveform. Exp. Brain Res., 1979, 36: 53–69. Blumhardt, L.D., Barrett, G., Kriss, A. and Halliday, A.M. The pattern-evoked potential in lesions of the posterior visual pathways. Ann. NY Acad. Sci., 1982, 388: 264–269. Blumhardt, L.D., Barrett, G., Halliday, A.M. and Kriss, A. The effect of field size on the pattern reversal visual evoked response (PREVER). Clin. Vision Sci., 1989, 4: 27–40. Bodis-Wollner, I., Ghilardi, M.F. and Mylin, L.H. The importance of stimulus selection in VEP practice: the clinical relevance in visual physiology. In: R.Q. Cracco and I. Bodis Wollner (Eds.), Evoked Potentials. Liss New York, 1987: 15–27. Bodis-Wollner, I., Brannan, J.R., Nicoll, J., Frkovic, S. and Mylin, L.H. A short latency cortical component of the foveal VEP is revealed by hemifield stimulation. Electroenceph. Clin. Neurophysiol., 1992, 84: 201–208. Brigell, M., Rubboli, G. and Celesia, G.G. Identification of the hemisphere activated by hemifield visual stimulation using a single equivalent dipole model. Electroenceph. Clin. Neurophysiol., 1993, 87: 291–299. Butler, S.R., Georgiou, G.A., Glass, A., Hancox, R.J., Hopper, J.M. and Smith, K.R.H. Cortical generators of the CI component of the pattern-onset visual evoked potential. Electroenceph. Clin. Neurophysiol., 1987, 68: 256–267. Darcey, T.M., Ary, J.P. and Fender, D.H. Spatio-temporal visually evoked scalp potentials in response to partial-field patterned stimulation. Eletroenceph. Clin. Neurophysiol., 1980, 50: 348–355. Dawson, W.W. and Maida, T.M. Relations between the human retinal cone and ganglion cell distribution. Ophtalmologica, 1984, 188: 216–221. Ducati, A., Fava, E. and Motti, E.D. Neuronal generators of the VEP: intracerebral recording in awake humans. Electroenceph. Clin. Neurophysiol., 1988, 71: 89–99. Duffy, F.H., Bartels, P.H. and Burchfiel, J.L. Significance probability mapping: an aid in the topographic analyses of brain electrical activity. Electroenceph. Clin. Neurophysiol., 1981, 51: 455–462. Fender, D.H. Models of the human brain and the surrounding media: their influence on the reliability of source localization. J. Clin. Neurophysiol., 1991, 8 (4): 381–390. Harding, G.F.A., Janday, B. and Armstrong, R.A. Topographic mapping and source localization of the pattern reversal visual magnetic response. Brain Topogr., 1991, 4: 47–55. Jeffreys, D. A. and Axford, J.G. Source location of pattern specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp. Brain Res., 1972, 16: 22–40. Jones, D.C. and Blume, W.T. Aberrant wave forms to pattern stimulation: clinical significance and electrographic ‘solutions’. Electroenceph. Clin. Neurophysiol., 1985, 61: 472–481. Jones, R. and Keck, M.J. VER and grating spatial frequency. Invest. Ophtalm. Visual. Sci., 1978, 17: 652–659. Krauskopf, J., Klemic, G., Lounasmaa, O.V., Travis, D., Kaufman, L. and Williamson, S.J. Neuromagnetic measurements of visual responses to chromaticity and luminance. In: S.J. Williamson, M. Hoke, G. Stroink and M. Kotami (Eds.), Advances in Biomagnetism. Plenum Press, New York, 1989: 209–212. Kriss, A. and Halliday, A.M. A comparison of occipital potentials evoked by pattern onset, offset and reversal by movement. In: C. Barber (Ed.), Evoked Potentials, MTP Press, Lancaster, 1980: 205–212. Kuroiwa, Y. and Celesia, G.G. Visual evoked potentials with hemifield pattern stimulation. Their use in diagnosis of retrochiasmal lesions. Arch. Neurol., 1981, 38: 66–90. Michael, W.F. and Halliday, A.M. Differences between the occipital distribution of upper and lower field pattern evoked responses in man. Brain Res., 1971, 32: 311–324. Nelson, J.I. and Seiple, W.H. Human VEP contrast modulation sensitivity: separation of magno- and parvocellular components. Electroenceph. Clin. Neurophysiol., 1992, 84: 1–12. Novak, G.P., Wiznitzer, M., Kurtzberg, D., Giesser, B.S. and Vaughan, H.G., Jr., The utility of visual evoked potentials using hemifield stimulation and several check sizes in the evaluation of suspected multiple sclerosis. Electroenceph. Clin. Neurophysiol., 1988, 71: 1–9. Okada, Y. Neurogenesis of evoked magnetic fields. In: S.J. Williamson, G. Romani, L. Kaufman and I. Modena (Eds.), Biomagnetism. An interdisciplinary approach. Nata. ASI series, Plenham, New York, London, 1983: 399–408. Onofrj, M., Bodis-Wollner, I. and Mylin, L. Visual evoked potential diagnosis of field defects in patients with chiasmatic and retrochiasmatic lesions. J. Neurol. Neurosurg. Psychiat., 1982, 45: 294–302. Onofrj, M., Ghilardi, M.F., Basciani, M. and Gambi, D. Visual evoked potentials in Parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. J. Neurol. Neurosurg. Psychiat., 1986, 49: 1150–1159. Onofrj, M. Generators of pattern visual evoked potentials in normals and in patients with retrochiasmatic lesions. In: J.E. Desmedt (Ed.), Visual Evoked Potentials. Clinical Neurophysiology Updates, Elsevier Amsterdam, 1990, 3: 87–113. Onofrj, M., Bazzano, S., Malatesta, G. and Fulgente, T. Mapped distribution of pattern reversal VEPs to central field and lateral half-field stimuli of different spatial frequencies. Electroenceph. Clin. Neurophysiol., 1991, 80: 167–180. Ossenblok, P. and Spekreijse, H. The extrastriate generators of the EP to checkerboard onset. A source localization approach. Electroenceph. Clin. Neurophysiol., 1991, 80: 181–193. Paulus, W.M., Plendl, H. and Krafczyk, S. Spatial dissociation of early and late colour evoked components. Electroenceph. Clin. Neurophysiol., 1988, 71: 81–88. Plant, G.T. Transient visually evoked potentials to sinusoidal gratings in optic neuritis. J. Neurol. Neurosurg. Psychiat., 1983, 46: 1125–1133. Polyak, S. The vertebrate visual system. University of Chicago Press, Chicago, IL., 1957. Previc, F.H. The neurophysiological significance of the N1 and P1 components of the visual evoked potential. Clin. Vision Sci., 1988, 3: 195–202. Scherg, M. Fundamentals of dipole source potential analysis. In: F. Grandori, M. Hoke and G.L. Romani (Eds.), Auditory Evoked Magnetic Fields and Electric Potentials. Basel Karger, 1990, 6: 40–69. Skrandies, W. Visual evoked potentials topography: methods and results. In: F.H. Duffy (Ed.), Topographic Mapping of Brain Electrical Activity. Butterworths, Stoneham, 1986: 7–28. Towle, V.L., Bolanos, J., Suarez, D., Tan, K., Grzeszuk, R., Levin, D.N., Cakman, R., Frank, S.A. and Spire, J.P. The spatial location of EEG electrodes: locating the best fitting sphere relative to cortical anatomy. Electroenceph. Clin. Neurophysiol., 1993, 86: 1–6. Towle, V.L., Witt, J.C., Ohira, T., Munson, R., Nader, S.H. and Spire, J.P. Three dimensional human pattern visual evoked potentials. I. Normal subjects. Electroenceph. Clin. Neurophysiol, 1991, 80: 329–338.