Một số tính chất của hệ thống kết hợp xung ẩn qua phép toán phân thời lượng φ-Hilfer

Springer Science and Business Media LLC - Tập 2021 - Trang 1-22 - 2021
Mohammed A. Almalahi1,2, Satish K. Panchal1
1Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, (M.S), India
2Department of Mathematics, Hajjah University, Hajjah, Yemen

Tóm tắt

Mục tiêu chính của công trình này là điều tra các điều kiện đủ cho sự tồn tại và duy nhất của các nghiệm cho hệ thống kết hợp xung ẩn của các phương trình vi phân phân thức φ-Hilfer (FDEs) với xung tức thời và điều kiện biên cuối. Đầu tiên, chúng tôi suy diễn các phương trình tích phân phân thức tương đương của hệ thống đề xuất. Tiếp theo, bằng cách sử dụng một số định lý điểm cố định chuẩn như định lý thay thế Leray–Schauder và Banach, chúng tôi chứng minh sự tồn tại và duy nhất của các nghiệm. Hơn nữa, bằng kỹ thuật phân tích toán học, chúng tôi nghiên cứu sự ổn định Ulam–Hyers (UH) và ổn định UH tổng quát (GUH) của các nghiệm. Cuối cùng, chúng tôi cung cấp một ví dụ liên quan để xác nhận các kết quả đã thu được.

Từ khóa

#Hệ thống vi phân phân thức #Ổn định Ulam-Hyers #Khảo sát nghiệm #Phép toán Hilfer #Hệ thống kết hợp xung

Tài liệu tham khảo

Abdeljawad, T.: Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals. Chaos 29, 023102 (2019) https://doi.org/10.1063/1.5085726 Abdeljawad, T.: Fractional difference operators with discrete generalized Mittag-Leffler kernels. Chaos Solitons Fractals 126, 315–324 (2019) Abdeljawad, T., Baleanu, D.: On fractional derivatives with generalized Mittag-Leffler kernels. Adv. Differ. Equ. 2018, 468 (2018) Abdo, M.S., Abdeljawad, T., Ali, S.M., Shah, K., Jarad, F.: Existence of positive solutions for weighted fractional order differential equations. Chaos Solitons Fractals 141, 110341 (2020) Abdo, M.S., Abdeljawad, T., Shah, K., Jarad, F.: Study of impulsive problems under Mittag-Leffler power law. Heliyon 6(10), e05109 (2020) Abdo, M.S., Shah, K., Panchal, S.K., Wahash, H.A.: Existence and Ulam stability results of a coupled system for terminal value problems involving ψ-Hilfer fractional operator. Adv. Differ. Equ. 2020(1), 316 (2020) Abdo, M.S., Thabet, S.T.M., Ahmad, B.: The existence and Ulam–Hyers stability results for ψ-Hilfer fractional integrodifferential equations. J. Pseudo-Differ. Oper. Appl. 11, 1757–1780 (2020). https://doi.org/10.1007/s11868-020-00355-x Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109(3), 973–1033 (2010) Ahmad, B., Alghanmi, M., Nieto, J.J., Alsaedi, A.: On impulsive nonlocal integro-initial value problems involving multi-order Caputo-type generalized fractional derivatives and generalized fractional integrals. Adv. Differ. Equ. 2019(1), 247 (2019) Ahmad, M., Zada, A., Wang, X.: Existence, Uniqueness and Stability of Implicit Switched Coupled Fractional Differential Equations of ψ-Hilfer Type. Int. J. Nonlinear Sci. Numer. Simul. 1(ahead–of–print) (2020) Al-Mayyahi, S.Y., Abdo, M.S., Redhwan, S.S., Abood, B.N.: Boundary value problems for a coupled system of Hadamard-type fractional differential equations. IAENG Int. J. Appl. Math. 51(1), 1–10 (2021) Ali, A., Shah, K., Jarad, F.: Ulam–Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions. Adv. Differ. Equ. 2019(1), 7 (2019) Ali, A., Shah, K., Jarad, F., et al.: Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations. Adv. Differ. Equ. 2019, 101 (2019). https://doi.org/10.1186/s13662-019-2047-y Aljaaidi, T.A., Pachpatte, D.B.: The Minkowski’s inequalities via ψ-Riemann–Liouville fractional integral operators. Rend. Circ. Mat. Palermo (2) Suppl. (2020). https://doi.org/10.1007/s12215-020-00539-w Almalahi, M.A., Abdo, M.S., Panchal, S.K.: On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative. AIMS Math. 5(5), 4889 (2020). https://doi.org/10.3934/math.2020312 Almalahi, M.A., Abdo, M.S., Panchal, S.K.: Existence and Ulam–Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Results Appl. Math. 10, 100142 (2021). https://doi.org/10.1016/j.rinam.2021.100142 Almalahi, M.A., Abdo, M.S., Panchal, S.K.: Existence and Ulam–Hyers–Mittag-Leffler stability results of ψ-Hilfer nonlocal Cauchy problem. Rend. Circ. Mat. Palermo (2) Suppl. 70, 57–77 (2021). https://doi.org/10.1007/s12215-020-00484-8 Almalahi, M.A., Panchal, S.K.: On the theory of ψ-Hilfer nonlocal Cauchy problem. J. Sib. Fed. Univ. Math. Phys. 14(2), 159–175 (2021). https://doi.org/10.17516/1997-1397-2021-14-2-161-177 Almalahi, M.A., Panchal, S.K., Jarad, F.: Stability results of positive solutions for a system of ψ-Hilfer fractional differential equations. Chaos Solitons Fractals 147, 110931 (2021). https://doi.org/10.1016/j.chaos.2021.110931 Almalahi, M.A., Panchal, S.K., Jarad, F., Abdeljawad, T.: Ulam–Hyers–Mittag-Leffler stability for tripled system of weighted fractional operator with TIME delay. Adv. Differ. Equ. 2021, 299 (2021). https://doi.org/10.1186/s13662-021-03455-0 Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017) Almeida, R., Malinowska, A.B., Odzijewicz, T.: Fractional differential equations with dependence on the Caputo–Katugampola derivative. J. Comput. Nonlinear Dyn. 11(6) (2016). https://doi.org/10.1115/1.4034432 Alsulami, H.H., Ntouyas, S.K., Agarwal, R.P., Ahmad, B., Alsaedi, A.: A study of fractional-order coupled systems with a new concept of coupled non-separated boundary conditions. Bound. Value Probl. 2017, 68 (2017) Atangana, A.: Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102, 396–406 (2017) Atangana, A., Baleanu, D.: New fractional derivative with non-local and non-singular kernel. Therm. Sci. 20(2), 757–763 (2016) Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016) Benchohra, M., Seba, D.: Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 8(1), 14 (2009) Benchohra, M., Slimani, B.A.: Existence and uniqueness of solutions to impulsive fractional differential equations. Electron. J. Differ. Equ. 2009, 10 (2009) Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985) Derbazi, C., Baitiche, Z., Abdo, M.S., Abdeljawad, T.: Qualitative analysis of fractional relaxation equation and coupled system with ψ-Caputo fractional derivative in Banach spaces. AIMS Math. 6(3), 2486–2509 (2021) Granas, A., Dugundji, J.: Fixed Point Theory. Springer, Berlin (2013) Guo, T.L.: Nonlinear impulsive fractional differential equations in Banach spaces. Topol. Methods Nonlinear Anal. 42(1), 221–232 (2013) Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst., Ser. S 2019, 709 (2019) Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012(1), 142 (2012) Kharade, J.P., Kishor, D.K.: On the impulsive implicit ψ-Hilfer fractional differential equations with delay. Math. Methods Appl. Sci. 43(4), 1938–1952 (2020) Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) Oliveira, E., Sousa, J.V.C.: Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math. 73(3), 111 (2018) Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) Rus, I.A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 26, 103–107 (2010) Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon & Breach, Yverdon (1993) Sousa, J.V.C., de Oliveira, C.E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018) Sousa, J.V.C., de Oliveira, C.E.: On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 20(3), 96 (2018) Sousa, J.V.C., de Oliveira, C.E.: A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Differ. Equ. Appl. 11(1), 87–106 (2019) Wang, J., Feckan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19(4), 806–831 (2016)