Một số triển vọng mới trong việc hiểu biết về cơ sở phân tử của bệnh lý đột quỵ

Springer Science and Business Media LLC - Tập 182 - Trang 1-10 - 2007
Sheikh Arshad Saeed1, Kaneez Fatima Shad1, Taimur Saleem1, Faisal Javed1, Muhammad Umair Khan1
1Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan

Tóm tắt

Đột quỵ là một trong những nguyên nhân hàng đầu gây tử vong và bệnh tật ở các quốc gia phát triển. Mặc dù các loại reactive oxygen và nitrogen species (ROS và RNS) là sản phẩm phụ của các quá trình chuyển hóa bình thường và điều hòa các quá trình sinh lý quan trọng, nhưng chúng có thể gây hại cho tế bào nếu được sản xuất quá mức do stress oxy hóa. Trong bài đánh giá hiện tại, chúng tôi tập trung vào các khía cạnh tế bào và phân tử của việc sinh ra ROS và RNS cũng như vai trò của chúng trong sinh bệnh học của đột quỵ do hiện tượng thiếu oxy-tái tưới máu (H-R) gây ra stress oxy hóa. Chúng tôi phác thảo những lý do cho sự dễ tổn thương của não đối với tổn thương thiếu máu, nhiễm trùng mạn tính và viêm cũng như các cơ chế phòng vệ tự nhiên chống lại tổn thương do gốc tự do. Chúng tôi xem xét ảnh hưởng của ROS và RNS lên các con đường truyền tín hiệu tế bào cùng với các hiện tượng apoptosis, tổn thương ti thể và sự sống sót liên quan đến các con đường này. Các cơ chế truyền tín hiệu nội bào bị ảnh hưởng bởi các loại gốc phản ứng có thể có tác động đáng kể đến kết quả của tình trạng này. Các nghiên cứu trong tương lai nên tập trung vào việc hiểu các cơ chế phân tử liên quan đến tác động của các tác nhân chống gốc và chế độ tác động của chúng.

Từ khóa

#đột quỵ #stress oxy hóa #gốc tự do #ROS #RNS #tổn thương tế bào #apoptosis #cơ chế truyền tín hiệu

Tài liệu tham khảo

Adibhatla RM, Hatcher JF (2003) Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J Neurochem Res 73:308–315 Adibhatla RM, Hatcher JF (2005) 50-diphosphocholine (CDP-choline) in stroke and other CNS disorders. Neurochem Res 30:15–23 Adibhatla RM, Hatcher JF, Dempsey RJ (2002) Citicoline: neuroprotective mechanisms in cerebral ischemia. J Neurochem 80:12–23 Alexandrova MA, Bochev PG (2005) Oxidative stress during the chronic phase after stroke. Free Radic Biol Med 39:297–316 Asahi M, Asahi K, Wang X, Lo EH M (2000) Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J Cereb Blood Flow Metab 20:452–457 Bolander-Gouaille C (2000) Focus on homocysteine. Springer France 121–123 Carden DL, Granger DN (2000) Pathophysiology of ischaemiareperfusion injury. J Pathol 190:255–266 Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14 Chen RM, Chen TL, Chiu WT, Chang CC (2005) Molecular mechanism of nitric oxide-induced osteoblast apoptosis. J Orthop Res 23462–8 Costa D, Gomes A, Reis S, Lima JL, Fernandes E (2005) Hydrogen peroxide scavenging activity by non-steroidal anti-inflammatory drugs. Life Sci 76:2841–2848 Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38:1433–1444 Crack PJ, Taylor JM, Flentjar NJ, de Haan J, Hertzog P, Iannello RC, Kola I (2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem 78:1389–1399 Dhar-Mascareno M, Carcamo JM, Golde DW Manya (2005) Hypoxia—reoxygenation-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C. Free Radic Biol Med 38:1311–1322 Endo H, Nito C, Kamada H, Nishi Tand Pak H Chan (2006a) Activation of the Akt/GSK3b signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26:1479–1489 Endo H, Saito A, Chan PH (2006b) Mitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischaemia. Biochem Soc Trans 34:1283–1286 Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–9 Figueroa S, Oset-Gasque MJ, Arce C, Martinez-Honduvilla CJ, Gonzalez MP (2006) Mitochondrial involvement in nitric oxide-induced cellular death in cortical neurons in culture. J Neurosci Res 83:441–449 Fujimura M, Morita-Fujimura Y, Murakami K, Kawase M, Chan PH (1998) Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 18:1239–1247 Fujimura M, Morita-Fujimura Y, Noshita N, Sugawara T, Kawase M, Chan PH (2000) The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci 20:2817–2824 Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury. Curr State 54:271–284 Herrmann W (2001) The importance of hyperhomocysteinemia as a risk factor for diseases: an overview. Clin Chem Lab Med 39:666–674 Herrmann W, Knapp JP (2002) Hyperhomocysteinemia: a new risk factor for degenerative diseases. Clin Lab 48:471–81 Hewett SJ, Uliasz TF, Vidwans AS, Hewett JA. (2000) Cyclooxygenase-2 contributes to n-methyl-d-aspartate- mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther 293:417–425 Hillered L, Vespa PM, Hovda DA (2002) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41 Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148 Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, Choudhri TF, Kim LJ, Mocco J, Pinsky DJ, Fox WD, Israel RH, Boyd TA, Golde DW, Connolly ES (2001) Dehydroascorbic acid, a blood–brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci USA 98:11720–11724 Ishibashi N, Prokopenko O , Weisbrot-Lefkowitz M, Reuhl KR, Mirochnitchenko O (2002) Glutathione peroxidase inhibits cell death and glial activation following experimental stroke. Mol Brain Res 109:34–44 Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446 Iwashita A, Maemoto T, Nakada H, Shima I, Matsuoka N, Hisajima H (2002) A novel potent radical scavenger, 8-(4-fluorophenyl)-2-((2E)-3-phenyl-2-propenoyl)-1,2,3,4-tetrahydropyrazolo[5,1-c] [1,2,4] triazine (FR210575), prevents neuronal cell death in cultured primary neurons and attenuates brain injury after focal ischemia in rats. J Pharmacol Exp Ther 307:961–968 Kamada H, Nito C, Endo H, Chan PH (2006) Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2006 Kim DW, Eum WS, Jang SH, Kim SY, Choi HS, Choi SH, An JJ, Lee SH, Lee KS, Han K, Kang TC, Won MH, Kang JH, Kwon OS, Cho SW, Kim TY, Park J, Choi SY (2005) Transduced Tat-SOD fusion protein protects against ischaemic brain injury. Mol Cells 19:88–96 Liu KJ, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39:71–80 MacGregor DG, Avshalumov MV, Rice ME (2003) Brain edema induced by in vitro ischemia: causal factors and neuroprotection. J Neurochem 85:1402–1411 Manabe Y, Anrather JA, Kawano T, Niwa K, Zhou P, M. Ross ME, Iadecola C (2004) Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol 55:668–675 Metodiewa D, Koska C (2000) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233 Paternò R, Ruocco A, PostiglioneaA, Hubsch A, Andresen I, Lang MG (2004) Reconstituted high-density lipoprotein exhibits neuroprotection in two rat models of stroke. Cerebrovasc Dis 17:204–211 Perttu JL, Armin JG (2003) Inflammation and infections as risk factors for ischemic stroke. Stroke 34:2518–2532 Pong K (2003) Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther 3:127–139 Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126 Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559 Schwartz-Bloom RD, Sah R (2001) g-Aminobutyric acid neurotransmission and cerebral ischemia. J Neurochem 77:353–371 Simonyi A, Wang Q, Miller RL, Yusof M, Shelat PB, Sun AY, Sun GY (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31:135–47 Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to clinical relevance. Prog Neurobiol 64:185–218 Stone TW (2005) Adenosine, neurodegeneration and neuroprotection. Neurol Res 27:161–168 Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607 Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:1–6 Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1:17–25 Taylor JM, Crack PJ (2004) Impact of oxidative stress on neuronal survival. Clin Exp Pharmacol Physiol 31:397–406 Toescu EC (2004) Hypoxia sensing and pathways of cytosolic calcium increases. Cell Calcium 36:187–199 Umemoto S, Tanaka M, Kawahara S, Kubo M, Umeji K, Hashimoto R, Matsuzaki M (2004) Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in stroke-prone spontaneously hypertensive rats. Hypertens Res 27:877–885 Weber V, Rubat C, Duroux E, Lartigue C, Madesclairea M, Coudert P (2005) New 3- and 4-hydroxyfuranones as anti-oxidants and anti-inflammatory agents. Bioorg Med Chem 13:4552–4564 Williams MS, Henkart PA (1996) Role of reactive oxygen intermediates in TCR-induced death of T cell blasts and hybridomas. J Immunol 157:2395 Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86 Yamato M, Egashira T, Utsumi H (2003) Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med 35:1619–1631 Zipfel GJ, Babcock DJ, Lee JM, Choi DW (2000) Neuronal apoptosis after CNS injury: the roles of glutamate and calciu. 17:857–869