Some coupled coincidence and common fixed point results for a hybrid pair of mappings in 0-complete partial metric spaces

Long Wei1, Satish Shukla2, Stojan Radenović3, Slobodan Radojević3
1College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
2Department of Applied Mathematics, Shri Vaishnav Institute of Technology and Science, Gram Baroli, Sanwer Road, Indore, MP, 453331, India
3Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Beograd, 11120, Serbia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Nadler SB Jr.: Multi-valued contraction mappings. Pac. J. Math. 1969, 30: 475–488. 10.2140/pjm.1969.30.475

Matthews SG: Partial metric topology. Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topology and Applications 1994, 183–197.

Abdeljawad T: Fixed points of generalized weakly contractive mappings in partial metric spaces. Math. Comput. Model. 2011, 54: 2923–2927. 10.1016/j.mcm.2011.07.013

Abdeljawad T, Karapinar E, Taş K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24: 1900–1904. 10.1016/j.aml.2011.05.014

Ahmad AGB, Fadail ZM, Rajić VC, Radenović S: Nonlinear contractions in 0-complete partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 451239. doi:10.1155/2012/451239

Altun I, Acar O: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol. Appl. 2012, 159: 2642–2648. 10.1016/j.topol.2012.04.004

Altun I, Romaguera S: Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point. Appl. Anal. Discrete Math. 2012, 6: 247–256. 10.2298/AADM120322009A

Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157: 2778–2785. 10.1016/j.topol.2010.08.017

Aydi H, Abbas M, Vetro C: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 2012, 159(14):3234–3242. 10.1016/j.topol.2012.06.012

Di Bari C, Kadelburg Z, Nashine HK, Radenović S: Common fixed points of g -quasicontractions and related mappings in 0-complete partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 113. doi:10.1186/1687–1812–2012–113

Bukatin M, Kopperman R, Matthews S, Pajoohesh H: Partial metric spaces. Am. Math. Mon. 2009, 116: 708–718. 10.4169/193009709X460831

Ćirić L, Samet B, Aydi H, Vetro C: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218: 2398–2406. 10.1016/j.amc.2011.07.005

Đukić D, Kadelburg Z, Radenović S: Fixed points of Geraghty-type mappings in various generalized metric spaces. Abstr. Appl. Anal. 2011., 2011: Article ID 561245. doi:10.1155/2011/561245

Ilić D, Pavlović V, Rakočević V: Extensions of Zamfirescu theorem to partial metric spaces. Math. Comput. Model. 2012, 55: 801–809. 10.1016/j.mcm.2011.09.005

Ilić D, Pavlović V, Rakoćević V: Some new extensions of Banach’s contraction principle to partial metric spaces. Appl. Math. Lett. 2011, 24: 1326–1330. 10.1016/j.aml.2011.02.025

Kadelburg Z, Nashine HK, Radenović S: Fixed point results under various contractive conditions in partial metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2012. doi:10.1007/s13398–012–0066–6

Romaguera S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 493298

Romaguera S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 2012, 159: 194–199. 10.1016/j.topol.2011.08.026

Romaguera S: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces. Appl. Gen. Topol. 2011, 12(2):213–220.

Romaguera S: On Nadler’s fixed point theorem for partial metric spaces. Math. Sci. Appl. E-Notes 2013, 1(1):1–8.

Shobkolaei N, Sedghi S, Roshan JR, Altun I:Common fixed point of mappings satisfying almost generalized ( S , T ) -contractive condition in partially ordered partial metric spaces. Appl. Math. Comput. 2012, 219: 443–452. 10.1016/j.amc.2012.06.063

Shukla S, Radenović S: Some common fixed point theorems for F -contraction type mappings in 0-complete partial metric spaces. J. Math. 2013., 2013: Article ID 878730. doi:10.1155/2013/878730

Bhashkar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. TMA 2006, 65(7):1379–1393. doi:10.1016/j.na.2005.10.017 10.1016/j.na.2005.10.017

Abbas M, Ćirić L, Damjanović B, Khan MA: Coupled coincidence and common fixed point theorems for hybrid pair of mappings. Fixed Point Theory Appl. 2012., 2012: Article ID 4. doi:10.1186/1687–1812–2012–4

Aydi H, Abbas M, Postolache M: Coupled coincidence points for hybrid pair of mappings via mixed monotone property. J. Adv. Math. Stud. 2012, 5(1):118–126.

Rao KPR, Kishore GNV, Tas K: A unique common tripled fixed point theorem for hybrid pair of maps. Abstr. Appl. Anal. 2012., 2012: Article ID 750403

Al-Thagafi MA, Shahzad N: Coincidence points, generalized I -nonexpansive multimaps and applications. Nonlinear Anal. TMA 2007, 67(7):2180–2188. doi:10.1016/j.na.2006.08.042 10.1016/j.na.2006.08.042

Hong SH: Fixed points of discontinuous multivalued increasing operators in Banach spaces with applications. J. Math. Anal. Appl. 2003, 282: 151–162. doi:10.1016/S0022–247X(03)00111–2 10.1016/S0022-247X(03)00111-2

Hong SH: Fixed points for mixed monotone multivalued operators in Banach spaces with applications. J. Math. Anal. Appl. 2008, 337: 333–342. doi:10.1016/j.jmaa.2007.03.091 10.1016/j.jmaa.2007.03.091

Hong SH, Guan D, Wang L: Hybrid fixed points of multivalued operators in metric spaces with applications. Nonlinear Anal. TMA 2009, 70: 4106–4117. doi:10.1016/j.na.2008.08.020 10.1016/j.na.2008.08.020