Some coupled coincidence and common fixed point results for a hybrid pair of mappings in 0-complete partial metric spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nadler SB Jr.: Multi-valued contraction mappings. Pac. J. Math. 1969, 30: 475–488. 10.2140/pjm.1969.30.475
Matthews SG: Partial metric topology. Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topology and Applications 1994, 183–197.
Abdeljawad T: Fixed points of generalized weakly contractive mappings in partial metric spaces. Math. Comput. Model. 2011, 54: 2923–2927. 10.1016/j.mcm.2011.07.013
Abdeljawad T, Karapinar E, Taş K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24: 1900–1904. 10.1016/j.aml.2011.05.014
Ahmad AGB, Fadail ZM, Rajić VC, Radenović S: Nonlinear contractions in 0-complete partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 451239. doi:10.1155/2012/451239
Altun I, Acar O: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol. Appl. 2012, 159: 2642–2648. 10.1016/j.topol.2012.04.004
Altun I, Romaguera S: Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point. Appl. Anal. Discrete Math. 2012, 6: 247–256. 10.2298/AADM120322009A
Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157: 2778–2785. 10.1016/j.topol.2010.08.017
Aydi H, Abbas M, Vetro C: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 2012, 159(14):3234–3242. 10.1016/j.topol.2012.06.012
Di Bari C, Kadelburg Z, Nashine HK, Radenović S: Common fixed points of g -quasicontractions and related mappings in 0-complete partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 113. doi:10.1186/1687–1812–2012–113
Bukatin M, Kopperman R, Matthews S, Pajoohesh H: Partial metric spaces. Am. Math. Mon. 2009, 116: 708–718. 10.4169/193009709X460831
Ćirić L, Samet B, Aydi H, Vetro C: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218: 2398–2406. 10.1016/j.amc.2011.07.005
Đukić D, Kadelburg Z, Radenović S: Fixed points of Geraghty-type mappings in various generalized metric spaces. Abstr. Appl. Anal. 2011., 2011: Article ID 561245. doi:10.1155/2011/561245
Ilić D, Pavlović V, Rakočević V: Extensions of Zamfirescu theorem to partial metric spaces. Math. Comput. Model. 2012, 55: 801–809. 10.1016/j.mcm.2011.09.005
Ilić D, Pavlović V, Rakoćević V: Some new extensions of Banach’s contraction principle to partial metric spaces. Appl. Math. Lett. 2011, 24: 1326–1330. 10.1016/j.aml.2011.02.025
Kadelburg Z, Nashine HK, Radenović S: Fixed point results under various contractive conditions in partial metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2012. doi:10.1007/s13398–012–0066–6
Romaguera S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 493298
Romaguera S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 2012, 159: 194–199. 10.1016/j.topol.2011.08.026
Romaguera S: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces. Appl. Gen. Topol. 2011, 12(2):213–220.
Romaguera S: On Nadler’s fixed point theorem for partial metric spaces. Math. Sci. Appl. E-Notes 2013, 1(1):1–8.
Shobkolaei N, Sedghi S, Roshan JR, Altun I:Common fixed point of mappings satisfying almost generalized ( S , T ) -contractive condition in partially ordered partial metric spaces. Appl. Math. Comput. 2012, 219: 443–452. 10.1016/j.amc.2012.06.063
Shukla S, Radenović S: Some common fixed point theorems for F -contraction type mappings in 0-complete partial metric spaces. J. Math. 2013., 2013: Article ID 878730. doi:10.1155/2013/878730
Bhashkar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. TMA 2006, 65(7):1379–1393. doi:10.1016/j.na.2005.10.017 10.1016/j.na.2005.10.017
Abbas M, Ćirić L, Damjanović B, Khan MA: Coupled coincidence and common fixed point theorems for hybrid pair of mappings. Fixed Point Theory Appl. 2012., 2012: Article ID 4. doi:10.1186/1687–1812–2012–4
Aydi H, Abbas M, Postolache M: Coupled coincidence points for hybrid pair of mappings via mixed monotone property. J. Adv. Math. Stud. 2012, 5(1):118–126.
Rao KPR, Kishore GNV, Tas K: A unique common tripled fixed point theorem for hybrid pair of maps. Abstr. Appl. Anal. 2012., 2012: Article ID 750403
Al-Thagafi MA, Shahzad N: Coincidence points, generalized I -nonexpansive multimaps and applications. Nonlinear Anal. TMA 2007, 67(7):2180–2188. doi:10.1016/j.na.2006.08.042 10.1016/j.na.2006.08.042
Hong SH: Fixed points of discontinuous multivalued increasing operators in Banach spaces with applications. J. Math. Anal. Appl. 2003, 282: 151–162. doi:10.1016/S0022–247X(03)00111–2 10.1016/S0022-247X(03)00111-2
Hong SH: Fixed points for mixed monotone multivalued operators in Banach spaces with applications. J. Math. Anal. Appl. 2008, 337: 333–342. doi:10.1016/j.jmaa.2007.03.091 10.1016/j.jmaa.2007.03.091