Some Results on Newtonian Gaseous Stars—Existence and Stability
Tóm tắt
This paper surveys some results on the existence and stability of solutions to some partial differential equations of gaseous stars in the framework of Newtonian mechanics, and presents some key ideas in the proofs.
Tài liệu tham khảo
Auchmuty, G., Beals, R. Variational solutions of some nonlinear free boundary problems. Arch. Rat. Mech. Anal., 43: 255–271 (1971)
Auchmuty, G. The global branching of rotating stars. Arch. Rat. Mech. Anal., 114: 179–194 (1991)
Caffarelli, L., Friedman, A. The shape of axi–symmetric rotating fluid. J. Funct. Anal., 694: 109–142 (1980)
Chandrasekhar, S. Introduction to the Stellar Structure. University of Chicago Press, 1939
Chandrasekhar, S. Phil. Mag. 11, 592 (1931); Astrophys. J. 74, 81 (1931); Monthly Notices Roy. Astron. Soc. 91, 456 (1931); Rev. Mod. Phys. 56, 137 (1984)
Chanillo, Sagun, Li, Yan Yan. On diameters of uniformly rotating stars. Comm. Math. Phys., 166(2): 417–430 (1994)
Coutand, D., Lindblad, H., Shkoller, S. A priori estimates for the free–boundary 3–D compressible Euler equations in physical vacuum. Commun. Math. Phys., 296: 559–587 (2010)
Coutand, D., Shkoller, S. Well–posedness of the free–surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc., 20: 829–930 (2007)
Coutand, D., Shkoller, S. Well–posedness in smooth function spaces for the moving–boundary 1–D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math., 64: 328–366 (2011)
Coutand, Daniel, Shkoller, Steve. Well–Posedness in Smooth Function Spaces for the Moving–Boundary Three–Dimensional Compressible Euler Equations in Physical Vacuum. Arch. Ration. Mech. Anal., 206(2): 515–616 (2012)
Cox, J.P., Giuli, R.T. Principles of stellar structure, I,II. Gordon and Breach, New York, 1968
Dafermos, C.M. Entropy and the stability of classical solutions of hyperbolic system of conservation laws, Recent Mathematical Methods in Nonlinear Wave Propagation, Montecatini Terme, 1994, Lecture Notes in Math. Vol. 1640, Springer–Verlag, Berlin, 1996, 48–69
DiPerna, Ronald J. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J., 28(1): 137–188 (1979)
Ducomet, B., Zlotnik, A. Stabilization and stability for the spherically symmetric Navier–Stokes–Poisson system. Appl. Math. Lett., 18: 1190–1198 (2005)
Duan, Q. On the dynamics of Navier–Stokes equations for a shallow water model. J. Differential Equations, 250: 2687–2714 (2011)
Deng, Y., Liu, T.P., Yang, T., Yao, Z. Solutions of Euler–Poisson equations for gaseous stars. Arch. Ration. Mech. Anal., 164(3): 261–285 (2002)
Fang, D.Y., Zhang, T. Global behavior of spherically symmetric Navier–Stokes–Poisson system with degenerate viscosity coefficients. Arch. Rational Mech. Anal., 191: 195–243 (2009)
Federbush, Paul, Luo, Tao, Smoller, Joel. Existence of magnetic compressible fluid stars. Arch. Ration. Mech. Anal., 215(2): 611–631 (2015)
Fowler, R.H. Monthly Notices Roy. Astron. Soc., 87: 114 (1926)
Friedman, A., Turkington, B. Asymptotic estimates for an axi–symmetric rotating fluid. J. Func. Anal., 37: 136–163 (1980)
Friedman, A., Turkington, B. Existence and dimensions of a rotating white dwarf. J. Diff. Eqns., 42: 414–437 (1981)
Guo, Y., Rein, G. Stable steady states in stellar dynamics. Arch. Rat. Mech. Anal., 147: 225–243 (1999)
Guo, Y., Rein, G. Stable models of elliptical galaxies. Mon. Not. R. Astron. Soc., 344: 1296–1306 (2002)
Gilbarg, D., Trudinger, N. Elliptic Partial Differentail Equations of Second Order (2nd ed.), Springer, 1983
Gu, Xumin, Lei, Zhen. Well–posedness of 1–D compressible Euler–Poisson equations with physical vacuum. J. Differential Equations, 252(3): 2160–2188 (2012)
Gu, Xumin, Lei, Zhen. Local well–posedness of the three dimensional compressible Euler–Poisson equations with physical vacuum. J. Math. Pures Appl., 105: 662–723 (2016)
Hadzic, Mahir, Jang, Juhi. Nonlinear stability of expanding star solutions of the radially symmetric mass–critical Euler–Poisson system. Comm. Pure Appl. Math., 71(5): 827–891 (2018)
Hadzic, Mahir, Jang, Juhi. Expanding large global solutions of the equations of compressible fluid mechanics. arXiv:1610.01666.
Hong, Guangyi, Luo, Tao, Zhu, Changjiang. Global solutions to physical vacuum problem of non–isentropic viscous gaseous stars and nonlinear asymptotic stability of stationary solutions. J. Differential Equations, 265(1): 177–236 (2018)
Jang, J. Local well–posedness of dynamics of viscous gaseous stars. Arch. Rational Mech. Anal., 195: 797–863 (2010)
Jang, J. Nonlinear instability in gravitational Euler–Poisson system for γ = 6 5. Arch. Ration. Mech. Anal., 188(2): 265–307 (2008)
Jang, Juhi, Makino, Tetu. On slowly rotating axisymmetric solutions of the Euler–Poisson equations. Arch. Ration. Mech. Anal., 225(2): 873–900 (2017)
Jang, J., Makino, T. On Rotating Axisymmetric Solutions of the Euler–Poisson Equations. arXiv: 1712.05241
Jang, Juhi, LeFloch, Philippe, Masmoudi, G., Nader. Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum. J. Differential Equations, 260(6): 5481–5509 (2016)
Jang, J., Tice, I. Instability theory of the Navier–Stokes–Poisson equations. Anal. PDE, 6(5): 1121–1181 (2013)
Jang, J. Nonlinear Instability Theory of Lane–Emden stars. Comm. Pure Appl. Math., 2016
Jang, J., Masmoudi, N. Well–posedness for compressible Euler with physical vacuum singularity. Commun. Pure Appl. Math., 62: 1327–1385 (2009)
Jang, J., Masmoudi, N. Well–posedness of compressible Euler equations in a physical vacuum. Comm. Pure Appl. Math., 68(1): 61–111 (2015)
Jang, J. Nonlinear Instability Theory of Lane–Emden stars. Comm. Pure Appl. Math., 67(9): 1418–1465 (2014)
Kreiss, H.O. Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math., 23: 277–296 (1970)
Kufner, A. Weighted Sobolev Spaces. Wiley–Interscience, New York, 1985
Kufner, A., Maligranda, L., Persson, L.E. The Hardy inequality. Vydavatelsky Servis, Plzen, 2007. About its history and some related results
Lieb, E.H., Yau, H.T. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys., 112(1): 147–174 (1987)
Lin, L.W. On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl., 121: 406–425 (1987)
Landau, L., Phys, Z. Sowjetunion 1, 285, 1932
Liu, T.P. Compressible flow with damping and vacuum. Jpn. J. Appl. Math., 13: 25–32 (1996)
Liu, T.P., Yang, T. Compressible Euler equations with vacuum. J. Differ. Equ., 140: 223–237 (1997)
Liu, T.P., Yang, T. Compressible flow with vacuum and physical singularity. Methods Appl. Anal., 7: 495–310 (2000)
Liu, T.P., Smoller, J. On the vacuum state for isentropic gas dynamics equations. Adv. Math., 1: 345–359 (1980)
Lax, P. Shock Waves and Entropy, Contribution to Nonlinear Functional Analysis, E.A. Zarantonello, ed. Academic Press, New York, 603–634, 1971
Lebovitz, N.R. The virial tensor and its application to self–gravitating fluids. Astrophys. J., 134: 500–536 (1961)
Lebovitz, N.R., Lifschitz, A. Short–wavelength instabilities of Riemann ellipsoids. Philos. Trans. Roy. Soc. London Ser. A, 354: 927–950 (1996)
Lebovitz, N.R. The virial tensor and its application to self–gravitating fluids. Astrophys. J., 134: 500–536 (1961)
Li, Yan Yan. On uniformly rotating stars. Arch. Rat. Mech. Anal., 115(4): 367–393 (1991)
Lieb, E.H., Loss, M. Analysis, American Mathematical Society. Providence, Rhode Island, 1997
Lin, S.S. Stability of gaseous stars in spherically symmetric motions. SIAM J. Math. Anal., 28(3): 539–569 (1997)
Lion, P.L. The concentration–compactness principle in the calculus of variations. The locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1: 109–145 (1984)
Liu, T.P. Compressible flow with damping and vacuum. Japan J. Appl. Math., 13: 25–32 (1996)
Liu, X., Titi, E. Local Well–posedness of Strong Solutions to the Three–dimensional Compressible Primitive Equations, arXiv: 1806.09868
Liu, Xin. Global solutions to compressible Navier–Stokes equations with spherical symmetry and free boundary. Nonlinear Anal. Real World Appl., 42: 220–254 (2018)
Liu, T.P., Yang, T. Compressible flow with vacuum and physical singularity. Methods Appl. Anal., 7: 495–509 (2000)
Liu, T.P., Xin, Z., Yang, T. Vacuum states of compressible flow. Discrete and Continuous Dynamical Systems, 4: 1–32 (1998)
Luo, T., Smoller, J. Rotating fluids with self–gravitation in bounded domains. Arch. Rat. Mech. Anal., 173(3): 345–377 (2004)
Luo, Tao, Smoller, Joel. On the Euler–Poisson equations of self–gravitating compressible fluids. Nonlinear conservation laws and applications, 415–431, IMA Vol. Math. Appl., 153, Springer, New York, 2011
Luo, T., Smoller, J. Nonlinear dynamical stability of Newtonian rotating and non–rotating white dwarfs and rotating supermassive stars. Comm. Math. Phys., 284(2): 425–457 (2008)
Luo, T., Smoller, J. Existence and non–linear stability of rotating star solutions of the compressible Euler–Poisson equations. Arch. Ration. Mech. Anal., 191(3): 447–496 (2009)
Luo, T., Xin, Z., Zeng, H. Well–Posedness for the Motion of Physical Vacuum of the Three–dimensional Compressible Euler Equations with or without Self–Gravitation. Arch. Rational Mech. Anal,, 213(3): 763–831 (2014)
Luo, Tao, Xin, Zhouping, Zeng, Huihui. On nonlinear asymptotic stability of the Lane–Emden solutions for the viscous gaseous star problem. Adv. Math., 291: 90–182 (2016)
Luo, T., Xin, Z., Zeng, H. Nonlinear asymptotic stability of the Lane–Emden solutions for the viscous gaseous star problem with density dependent viscosity. Comm. Math. Phys., 347(3): 657–702 (2016)
Luo, Tao, Zeng, Huihui. Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping. Comm. Pure Appl. Math., 69(7): 1354–1396 (2016)
Makino, T. On a local existence theorem for the evolution equation of gaseous stars. Patterns and Waves. Stud. Math. Appl., Vol. 18. North–Holland, Amsterdam, 459–479, 1986
Makino, T. Blowing up of the Euler–Poisson equation for the evolution of gaseous star. Transport Theory and Statistical Physics, 21: 615–624 (1992)
McCann, R. Stable rotating binary stars and fluid in a tube. Houston Journal of Mathematics, 32(2): 603–631 (2006)
Ou, Yaobin, Zeng, Huihui. Global strong solutions to the vacuum free boundary problem for compressible Navier–Stokes equations with degenerate viscosity and gravity force. J. Differential Equations, 259(11): 6803–6829 (2015)
Reed, M., Simon, B. Methods of Modern Mathematical Physics II: Fourier Analysis, Self–Adjointness. Academic Press, NewYork, 1975
Rein, G. Reduction and a concentration–compactness principle for energy–casimir functionals. SIAM J. Math. Anal., 33(4): 896–912 (2001)
Rein, G. Non–linear stability of gaseous stars. Arch. Rat. Mech. Anal., 168(2): 115–130 (2003)
Rudin, W. Principles of Mathematical Analysis (3rd Ed.), McGraw–Hill, Auckland, 1976
Secchi, P. On the uniqueness of motion of viscous gaseous stars. Math. Methods Appl. Sci., 13(5): 391–404 (1990)
Shapiro, S.H., Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars. WILEY–VCH, 2004
Shkoller, S., Sideris, T. Global existence of near–affine solutions to the compressible Euler equations. arXiv:1710.08368.
Strauss, Walter A., Wu, Yilun. Steady states of rotating stars and galaxies. SIAM J. Math. Anal., 49(6): 4865–4914 (2017)
Strohmer, G. Asymptotic estimates for a perturbation of the linearization of an equation for compressible viscous fluid flow. Studia Math., 185(2): 99–125 (2008)
Weinberg, S. Gravitation and Cosmology. John Wiley and Sons., New York, 1972
Wu, Yilun. On rotating star solutions to the non–isentropic Euler–Poisson equations. J. Differential Equations, 259(12): 7161–7198 (2015)
Wu, Yilun. Existence of rotating planet solutions to the Euler–Poisson equations with an inner hard core. Arch. Ration. Mech. Anal., 219(1): 1–26 (2016)
Xu, C.J., Yang, T. Local existence with physical vacuum boundary condition to Euler equations with damping. J. Differ. Equ., 210: 217–231 (2005)
Yang, T. Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math., 190: 211–231 (2006)
Zeng, Huihui. Global–in–time smoothness of solutions to the vacuum free boundary problem for compressible isentropic Navier–Stokes equations. Nonlinearity, 28(2): 331–345 (2015)
Zeng, Huihui. Global resolution of the physical vacuum singularity for three–dimensional isentropic inviscid flows with damping in spherically symmetric motions. Arch. Ration. Mech. Anal., 226(1): 33–82 (2017)
Zirin, H. Astrophysics of the Sun. Cambridge University Press, Cambridge, 1988