Some Recent Generalizations of the Classical Rigid Body Systems

Arnold Mathematical Journal - Tập 2 Số 4 - Trang 511-578 - 2016
Vladimir Dragović1, Borislav Gajić2
1The Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
2Mathematical Institute, Serbian Academy of Science and Art, Kneza Mihaila 36, 11000, Belgrade, Serbia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. Math. 38, 318–379 (1980)

Adler, M., van Moerbeke, P., Vanhaecke, P.: Algebraic Integrability, Painlevé Geometry and Lie Algebras. A Series of Modern Surveys in Mathematics, vol. 47. Springer, Berlin (2004)

Andjelić, T., Stojanović, R.: Rational Mechanics. Zavod za izdavanje udžbenika, Belgrade (1966). [in Serbian]

Appel’rot, G.G.: Zadacha o dvizhenii tyazhelogo tverdogo tela okolo nepodvizhnoĭ tochki. Uchenye Zap. Mosk. Univ. Otdel. Fiz. Mat. Nauk. 11, 1–112 (1894)

Appel’rot, G.: About the first paragraph of the paper S. Kowalevski: Sur le proble‘me de la rotation d’un corps solide autour d’un point fixe (Acta Mathematica. 12:2). Matem. Sb. 16(3), 483–507 (1892)

Arkhangel’skiy, Y.A.: Analytical Dynamics of Rigid Body. Nauka, Moskva (1977). [in Russian]

Arnold, V.I.: Mathematical Methods of Classical Mechanics, Nauka, Moscow, (1974) [in Russian]. Springer, English translation (1988)

Arnold, V.I.: Sur la géométrie différentiale des groupes de Lie de dimension infinite et ses applications à l’hydrodinamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(fasc. 1), 319–361 (1966)

Arnold, V.I.: On a theorem of Liouville concerning integrable problems of dynamics. Siberian Math. J. 4(2), 471–474 (1963)

Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. URSS, Moscow (2009). [in Russian]

Audin, M.: Spinning Tops. A Course on Integrable Systems. Cambridge Studies in Advanced Mathematics, vol. 51. Cambridge University Press, Cambridge (1996)

Barkin, Y.V., Borisov, A.V.: Non-integrability of the Kirchhoff equations and related problems in rigid body dynamics. VINITI, No. 5037-B89 (1989)

Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-geometric Approach to Nonlinear Integrable Equations. Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin Heidelberg (1994)

Belyaev, A.V.: On the motion of a multidimensional body with fixed point in a gravitational field. Mat. Sb. (N.S.), 114(156)(3), 465–470 (1981)

Belyaev, A.V.: On the general solution of the problem of the motion of a heavy rigid body in the Hess case. Mat. Sb. (N.S.), 206(5), 5–34 (2015)

Bilimović, A.: Rigid Body Dynamics. Mathematical Institute SANU, Special Editions (1955). [in Serbian]

Bobenko, A.I., Reyman, A.G., Semenov-Tien-Shansky, M.A.: The Kowalewski top 99 years later. Commun. Math. Phys. 122, 321–354 (1989)

Bogoyavlensky, O.I.: Integrable Euler equations on Lie algebras arising in physical problems. Soviet Acad. Izvestya 48, 883–938 (1984)

Borisov, A.V.: Necessary and sufficient conditions of Kirchhoff equation integrability. Regul. Chaot. Dyn. 1(2), 61–76 (1996)

Borisov, A.V., Mamaev, I.S.: Rigid Body Dynamics. Regul. Chaotic Dyn, Moscow-Izhevsk (2001). [in Russian]

Borisov, A.V., Mamaev, I.S.: The Hess case in the dynamics of a rigid body. Prikl. Mat. Mekh. 67(2), 256–265 (2003)

Buchstaber, V.M.: Functional equations, associated with addition theorems for elliptic functions, and two-valued algebraic groups. Russian Math. Surv. 45, 213–214 (1990)

Buchstaber, V.M., Novikov, S.P.: Formal groups, power systems and Adams operators. Mat. Sb. (N. S) 84(126), 81–118 (1971). [in Russian]

Buchstaber, V.M., Veselov, A.P.: Integrable correspondences and algebraic representations of multivalued groups. Int. Math. Res. Note. 1996(8):381–400 (1996)

Buchstaber, V.: n-Valued groups: theory and applications. Moscow Math. J. 6, 57–84 (2006)

Buchstaber, V.M., Dragović, V.: Two-valued groups, Kummer varieties and integrable billiards. arXiv:1011.2716

Chaplygin, S.A.: Selected Works. Nauka, Moscow (1976). [in Russian]

Darboux, G.: Principes de Géométrie Analytique. Gauthier-Villars, Paris (1917)

Dokshevich, A.I.: Mekhanika tverdogo tela. Naukova dumka, Kiev 6, 48–50 (1974)

Dragović, V.: Algebro-geometric integration in classical and statistical mechanics. Zb. Rad. (Beogr.) 11(19), 121–154 (2006)

Dragović, V.: Geometrization and generalization of the Kowalevski top. Commun. Math. Phys. 298, 37–64 (2010)

Dragović, V.: Pencils of conics and biquadratics, and integrability. In: Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014, Am. Math Soc. Translations, Volume 234, 2014, 97–120, ISBN-10:1-4704-1871-1, ISBN-13:978-1-4704-1871-7

Dragović, V., Milinković, D.: Analysis on Manifolds. Mathematical Faculty, Belgrade (2003). [in Serbian]

Dragović, V., Radnović, M.: Poncelet Porisms and Beyond. Springer, Birkhauser (2011)

Dragović, V., Gajić, B.: An L–A pair for the Hess–Apel’rot system and a new integrable case for the Euler–Poisson equations on $$so(4) \times so(4)$$ s o ( 4 ) × s o ( 4 ) . Proc. R. Soc. Edinburgh Sect. A 131, 845–855 (2001)

Dragović, V., Gajić, B.: The Lagrange bitop on $$so(4)\times so(4)$$ s o ( 4 ) × s o ( 4 ) and geometry of Prym varieties. Am. J. Math. 126, 981–1004 (2004)

Dragović, V., Gajić, B.: Systems of Hess–Appel’rot type. Commun. Math. Phys 265, 397–435 (2006)

Dragović, V., Gajić, B.: Elliptic curves and a new construction of integrable systems. Reg. Chaotic Dyn. 14(4–5), 466–478 (2009)

Dragović, V., Gajić, B.: On the cases of Kirchhoff and Chaplygin of the Kirchhoff equations. Reg. Chaotic Dyn. 17(5), 431–438 (2012)

Dragović, V., Gajić, B.: Four-dimensional Grioli precession. Reg. Chaotic Dyn. 19(6), 656–662 (2014)

Dragović, V., Gajić, B., Jovanović, B.: Systems of Hess–Appel’rot type and Zhukovskii property. Int. J. Geom. Methods Mod. Phys. 6(8), 1253–1304 (2009)

Dragović, V., Kukić, K.: New examples of systems of the Kowalevski type. Reg. Chaotic Dyn. 16(5), 484–495 (2011)

Dragović, V., Kukić, K.: Systems of the Kowalevski type and discriminantly separable polynomials. Reg. Chaotic Dyn. 19(2), 162–184 (2014a)

Dragović, V., Kukić, K.: The Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta-functions via discriminantly separable polynomials. Proc. Steklov Math. Inst. 286, 224–239 (2014b)

Dubrovin, B.A.: Completely integrable Hamiltonian systems, matrix operators and Abelian varieties. Funkc. Anal. Appl 11, 28–41 (1977). [in Russian]

Dubrovin, B.A.: Theta-functions and nonlinear equations. Uspekhi Math. Nauk 36, 11–80 (1981). [in Russian]

Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: Integrable Systems I. Dynamical Systems IV. Springer, Berlin (2001)

Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of Kortever-de Fries type, finite zone linear operators and Abelian varieties. Uspekhi Math. Nauk 31, 55–136 (1976). [in Russian]

Euler, L.: Du mouvement de rotation des corps solides autour d’un axe variable. Mémoires de l’académie des sciences de Berlin, 14, 154–193 (E292) (1765)

Fedorov, Y.N., Kozlov, V.V.: Various aspects of $$n$$ n -dimensional rigid body dynamics. Dynamical systems in classical mechanics, Am. Math. Soc. Transl. Ser. 2, 168, Am. Math. Soc., Providence, RI, 141–171 (1995)

Frahm, F: Uber gewisse Differentialgleichungen. Math. Ann. 8, 35–44 (1874)

Gajić, B.: Integration of Euler–Poisson equations by algebro-geometric methods. PhD. Thesis, Belgrade (2002) [in Serbian]

Gajić, B.: The rigid body dynamics: classical and algebro-geometric integration. Zb. Rad. (Beogr.) 16(24), 5–44 (2013)

Gashenenko, I., Gorr, G., Kovalev, A.: Classical Problems of the Rigid Body Dynamics. Naukova Dumka, Kiev (2012)

Gavrilov, L., Zhivkov, A.: The complex geometry of Lagrange top. L’Enseignement Mathématique 44, 133–170 (1998)

Golubev, V.V.: Lectures on Integration of the Equations of Motion of a Rigid Body About a Fixed Point, Moskva, Gostenhizdat, (1953) [in Russian]; English translation: Transl. Coronet Books, Philadelphia, PA (1953)

Gorr, G.V., Kudryashova, L.V., Stepanova, L.A.: Classical Problems of the Rigid Bidy Dynamics. Naukova Dumka, Development and Current State, Kiev (1978)

Grioli, G.: Esistenza e determinazione delle prezessioni regolari dinamicamente possibili per un solido pesante asimmetrico. Ann. Mat. Pura e Appl. 6(fasc. 3–4), 271–281 (1947)

Grushevsky, S., Krichever, I.: Integrable discrete Schrodinger equations and a characterization of Prym varieties by a pair of quadrisecants. Duke Math. J. 152, 317–371 (2010)

Hess, W.: Ueber die Euler’schen Bewegungsgleichungen und über eine neue particuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen. Punkt. Math. Ann. 37, 178–180 (1890)

Husson, E.: Recherche des intégrales algébriques. Ann. Fac. Sci. Toulouse 8, 73–152 (1906)

Jovanović, B.: Partial reduction of Hamiltonian flows and Hess–Appelrot systems on SO(n). Nonlinearity 20, 221–240 (2007)

Jovanović, B.: Symmetries and integrability. Publ. Inst. Math. Nouv. Ser. 84(98), 1–36 (2008)

Jurdjevic, V.: Integrable Hamiltonian systems on Lie Groups: Kowalevski type. Ann. Math. 150, 605–644 (1999a)

Jurdjevic, V.: Optimal Control, Geometry, and Mechanics. Mathematical Control Theory. Springer, New York (1999b)

Kharlamov, P.V.: Lectures on the Rigid Body Dynamics. Novosibirsk, p. 221 (1965)

Kharlamov, P.V.: On invariant relations of a sustem of differentrial equation. Mekh. Tverd. Tela N6, 15–24 (1974)

Kharlamov, P.V.: On algebraic invariant relations of the equations of motion of a rigid body having a fixed point. Mekh. Tverd. Tela N6, 25–33 (1974)

Kharlamov, P.V., Kovalev, A.M.: Invariant relation method in multibody dynamics. In: Proceedings of the Second World Congress of Nonlinear Analysis, Part 6 (Athens, 1996), Nonlinear Anal., 30(6) 3817–3828 (1997)

Kirchhoff, G.R.: Vorlesungen über Mathematische Physik. Mechanik, Leipzig (1874)

Komarov, I.V.: Kowalevski top for the hydrogen atom. Theor. Math. Phys. 47(1), 67–72 (1981)

Komarov, I.V., Kuznetsov, V.B.: Kowalevski top on the Lie algebras o(4), e(3) and o(3, 1). J. Phys. A 23(6), 841–846 (1990)

Komarov, I.V., Sokolov, V.V., Tsiganov, A.V.: Poisson maps and integrable deformations of the Kowalevski top. J. Phys. A 36, 8035–8048 (2003)

Kotter, F.: Sur le cas traite par M-me Kowalevski de rotation d’un corps solide autour d’un point fixe. Acta Math. 17, 209–263 (1893)

Kowalevski, S.: Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12, 177–232 (1889)

Kozlov, V.V.: The nonexistence of an additional analytic integral in the problem of the motion of a nonsymmetric heavy solid around a fixed point, Vestnik Moskov. Univ. Ser. I Mat. Meh. 30(1), 105–110 (1975)

Kozlov, V.V.: Methods of Qualitative Analysis in the Dynamics of a Rigid Body. MGU, Moscow (1980). [in Russian]

Kozlov, V.V.: Symmetry Topology and Resonant in Hamiltonian Mechanics. Udmurt State University, Izhevsk (1995). [in Russian]

Kozlov, V.V., Onischenko, D.A.: Nonintegrability of Kirchhoff equations. Dokl. A. N. SSSR 266(6), 1298–1300 (1982). [in Russian]

Kozlov, V.V., Treschev, D.V.: Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point I. Vestn. Mosk. Univ., Ser. 1. Matem., Mekh. 6, 73–81 (1985) [in Russian]

Kozlov, V.V., Treschev, D.V.: Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point II. Vestn. Mosk. Univ., Ser. 1. Matem., Mekh. 1, 39–44 (1986) [in Russian]

Lagrange, J.L.: Mécanique Analytique. Paris (1788)

Leimanis, E.: The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Springer, New York (1965)

Lubowiecki, P., Żoła̧dek, H.: The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity.J. Geom. Mech. 4(4), 443–467 (2012a)

Lubowiecki, P., Żoła̧dek, H.: The Hess–Appelrot system. II. Perturtbation and limit cycles. J. Differ. Equ. 252, 1701–1722 (2012b)

Manakov, S.V.: Remarks on the integrals of the Euler equations of the $$n$$ n - dimensional heavy top. Funkc. Anal. Appl. 10, 93–94 (1976). [in Russian]

Mumford, D.: Prym Varieties 1. A Collection of Papers Dedicated to Lipman Bers. Acad. Press, New York (1974)

Perelomov, A.M.: Some remarks on the integrability of the equations of motion of a rigid body in an ideal fluid. Funkc. Anal. Appl. 15, 83–85 (1981). [in Russian]

Ratiu, T.: Euler–Poisson equation on Lie algebras and the N-dimensional heavy rigid body. Am. J. Math. 104, 409–448 (1982)

Ratiu, T., van Moerbeke, P.: The Lagrange rigid body motion. Ann. Inst. Fourier Grenoble 32, 211–234 (1982)

Rubanovskii, V.N.: On a new particular solution of the equations of motion of a heavy solid in a liquid. Prikl. Matem. Mekhan 49(2), 212–219 (1985). [in Russian]

Sadetov, T.S.: The fourth algebraic integral of Kirchhoffs equations. J. Appl. Math. Mech. 64(2), 229–242 (2000)

Schottky,F.: Über das analytische Problem der Rotation eines starren Körpers im Raume von vier Dimensionen. Sitzungber. König. Preuss. Akad. Wiss. zu Berlin, pp. 227–232 (1891)

Simić, S.: On Noetherian approach to integrable cases of the motion of heavy top. Bulletin T.CXXI de l’Académie Serbe des Sciences et des Arts, Classe de Sciences mathématiques et naturelles, Sciences mathématiques, 25, 133–156 (2000)

Sokolov, V.V.: A new integrable case for Kirchoff equation. Theor. Math. Phys. 129(1), 1335–1340 (2001)

Sokolov, V.V.: Generalized Kowalevski Top: New Integrable Cases on $$e(3)$$ e ( 3 ) and $$so(4)$$ s o ( 4 ) , in the Book the Kowalevski poperty, edt, vol. B, p. 307. AMS, Kuznetsov (2002)

Sokolov, V.V., Tsiganov, A.V.: Lax pairs for the deformed Kowalevski and Goryachev–Chaplygin tops. Theor. Math. Phys 131(1), 543–549 (2001)

Trofimov, V.V., Fomenko, A.T.: Algebra and Geometry of Integrable Hamiltonian Differential Equations. Moscow, copublished with Izdatel’stvo Udmurtskogo Universiteta, Izhevsk, Faktorial (1995)

Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, p. 456. Cambridge at the University Press, Cambridge (1952)

Weil, A.: Euler and the Jacobians of elliptic curves, in Arithmetics and Geometry, Vol. 1, Progr. Math. 35, Birkhauser, pp. 353–359. Mass, Boston (1983)

Ziglin, S.L.: The absence of an additional real-analytic first integral in some problems of dynamics. Funct. Anal. Appl. 31(1), 3–9 (1997)

Zhukovski, N.E.: Geometrische interpretation des Hess’schen Falles der Bewegung Eines Schweren Starren Korpers um Einen Festen Punkt. Jber. Deutschen Math. Verein. 3, 62–70 (1894)