Some Inequalities in Classical Spaces with Mixed Norms

Positivity - 2002
Antonio Boccuto1, Alexander V. Bukhvalov2, Anna Rita Sambucini1
1Department of Mathematics and Informatics, University of Perugia, Perugia, Italy
2School of Management, St. Petersburg State University, Petersburg, Russia

Tóm tắt

We consider some inequalities in such classical Banach Function Spaces as Lorentz, Marcinkiewicz, and Orlicz spaces. Our aim is to explore connections between the norm of a function of two variables on the product space and the mixed norm of the same function, where mixed norm is calculated in function spaces on coordinate spaces, first in one variable, then in the other. This issue is motivated by various problems of functional analysis and theory of functions. We will currently mention just geometry of spaces of vector-valued functions and embedding theorems for Sobolev and Besov spaces generated by metrics which differ from L p. Our main results are actually counterexamples for Lorentz spaces versus the natural intuition that arises from the easier case of Orlicz spaces (Section 2). In the Appendix we give a proof for the Kolmogorov–Nagumo theorem on change of order of mixed norm calculation in its most general form. This result shows that L p is the only space where it is possible to change this order.

Từ khóa


Tài liệu tham khảo

Abramovich Yu. A.: Some theorems on normed lattices, Vestnik Leningrad. Univ., (1971), no.13, 5-11 (Russian); English transl.: Vestnik Leningrad Univ. Math., 4 (1977), 153-159.

Bardaro C., Musielak J., Vinti G.: Some modular inequalities related to the Fubini-Tonelli theorem, Proceedings of A. Razmadze Mathematical Institute (1998), 3-14.

Bukhvalov A. V.: On spaces with mixed norm, Vestnik Leningrad. Univ., (1973), no.19, 5-12 (Russian); English transl.: Vestnik Leningrad Univ. Math., 6 (1979), 303-311.

Bukhvalov A. V.: Integral operators and representation of completely linear functionals on spaces with a mixed norm, Sibirsk. Mat. Zh., 16 (1975), 483-493 (Russian); English transl.: Siberian. Math. J., 16 (1975) 368-376.

Bukhvalov A. V.: Generalization of the Kolmogorov-Nagumo theorem on the tensor product, Qualitative and Approximate Methods for the Investigation of Operator Equations, 4, Jaroslavl', (1979), 48-65 (Russian).

Bukhvalov A. V.: On the connection of symmetric spaces on the square with speces with mixed norm, Reports of Conference of Tartu State Univ., (1980) 100-102 (Russian).

Bukhvalov A. V.: Interpolation of operators in spaces of vector-valued functions, with applications to singular integral operators, Dokl. Akad. Nauk SSSR, 278 (1984), no.3, 523-526 (Russian); English transl.: Soviet Math. Dokl., 30 (1984), no. 2, 401-404.

Bukhvalov A. V.: Interpolation of generalized Sobolev and Besov spaces with an application to the trace theorem for Sobolev spaces, Dokl. Akad. Nauk SSSR, 279 (1984), no. 6, 1293-1296 (Russian); English transl.: Soviet Math. Dokl., 30 (1984), no. 3, 790-793.

Bukhvalov A. V.: Interpolation of linear operators in spaces of vector-valued functions with a mixed norm, Sibirsk. Mat. Zh., 28 (1987), no. 1, 37-51 (Russian); English transl.: Siberian. Math. J., 28 (1987), 24-36.

Bukhvalov A. V.: Traces of functions from Sobolev spaces with metric generated by rearrangement invariant norm, Trudy Mat. Inst. Steklov, 180 (1987), 72-73 (Russian) English transl.: Proc. Steklov Inst. Math., (1989), issue 3, 82-83.

Chong K. M. and Rice N. M.: Equimeasurable rearrangements of functions, Queen's Papers in Pure and Appl. Math., no.28, Queen's University, Kingston, Ontario, Canada, 1971.

Firey W. J.: Some means of convex bodies, Trans. Amer. Math. Soc., 129 (1967), 181-217.

Hensgen W.: Some properties of the vector-valued Banach ideal space E(X) derived from those of E and X, Collect. Math., 43 (1992) no. 1, 1-13.

Hoffman-Jørgensen J.: Sums of independent Banach space valued random variables, Studia Math., 52 (1974) no. 2, 159-186.

Kantorovich L. V., Akilov G. P.: Functional Analysis, 2nd rev. ed, 'Nauka', Moscow (1977) (Russian); English transl.: Pergamon Press, Oxford (1982).

Kolmogoroff A.: Sur notion de la moyenne, Rend. Acad. dei Lincei, 6 (1930), 388-391.

Krivine J. L.: Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. Math., 104 (1976), 1-29.

Lindenstrauss J., Tzafiri L.: Classical Banach spaces. II. Function spaces, Springer, Berlin 1979.

Lorentz G. G.: On the theory of spaces Λ, Pacific J. Math., 1 (1951), 411-429.

Lozanovskii G. Ya.: On some Banach lattices. I, Sibirsk. Mat. Zh., 10 (1969), 584-599 (Russian); English transl.: Siberian. Math. J., 10 (1969), 419-431.

Lozanovskii G. Ya.: On some Banach lattices. II, Sibirsk. Mat. Zh., 12 (1971), 562-567 (Russian); English transl.: Siberian. Math. J., 12 (1971), 397-410.

Lozanovskii G. Ya.: On some Banach lattices. III, Sibirsk. Mat. Zh., 13 (1972), 1304-1313 (Russian); English transl.: Siberian. Math. J., 13 (1972), 910-916.

Lozanovskii G. Ya.: On some Banach lattices. IV, Sibirsk. Mat. Zh., 14 (1973), 140-155 (Russian); English transl.: Siberian. Math. J., 14 (1973), 97-108.

Luxemburg W. A. J.: On the measurability of a function which occurs in a paper by A.C. Zaanen, Proc. Nederl. Akad. Wetensch., A61 (1958), 259-265.

Luxemburg W. A. J.: Addendum to “On the measurability of a function which occurs in a paper by A.C. Zaanen”, Proc. Nederl. Akad. Wetensch., A66 (1963), 587-590.

Meyer-Nieberg P.: Ein verbands theoretischer Beweis einer Charakterisierung von Lp Räumen, Arch. Math., 26 (1975), 284-288.

Milman M.: Embeddings of Lorentz-Marcinkiewich spaces with mixed norms, Analysis Mathematica, 4 (1978), 215-223.

Milman M.: A note on L(p, q) spaces and Orlicz spaces with mixed norms, Proc. Am. Math. Soc., 83 (1981), no. 4, 743-746.

Mityagin B. S.: The homotopy structure of the linear group of a Banach space, Uspekhi Mat. Nauk, 25 (1970), no. 5, 63-106 (Russian); English transl.: Russian Math. Surveys, 25 (1970), no. 5, 59-103.

Nagumo M.: Ñber eine Klasse der Mittelweste, Japan J. Math., 7 (1930).

Nielsen N. J.: On Banach ideals determined by Banach lattices and their applications, Diss. Math., 109 (1973).

Pisier G.: Une propriété de stabilité de la classe des espaces ne contenant l1, C. R. Acad. Sci. Paris, A286 (1978), 747-749.

Rao M. M., Ren Z. D.: Theory of Orlicz spaces, Pure Appl. Math., Marcel Dekker, New York, Basel, 1991.

Reisner S.: On the duals of Lorentz functions and sequence spaces, Indiana Univ. Math. J., 31 (1982) no. 1, 65-72.

Schaefer H. H.: Banach lattices and positive operators, Springer, Berlin 1974.

Sukochev F. A.: RUC-bases in Orlicz and Lorentz operator spaces, Positivity, 2 (1998), 265-279

Turrett B., Uhl J. J., Jr.: L p(µ,X) (1 < p < ∞) has the Radon-Nikodym property if X does by martingales, Proc. Am. Math. Soc., 61 (1976), no. 2, 347-350.