Some Inequalities in Classical Spaces with Mixed Norms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramovich Yu. A.: Some theorems on normed lattices, Vestnik Leningrad. Univ., (1971), no.13, 5-11 (Russian); English transl.: Vestnik Leningrad Univ. Math., 4 (1977), 153-159.
Bardaro C., Musielak J., Vinti G.: Some modular inequalities related to the Fubini-Tonelli theorem, Proceedings of A. Razmadze Mathematical Institute (1998), 3-14.
Bukhvalov A. V.: On spaces with mixed norm, Vestnik Leningrad. Univ., (1973), no.19, 5-12 (Russian); English transl.: Vestnik Leningrad Univ. Math., 6 (1979), 303-311.
Bukhvalov A. V.: Integral operators and representation of completely linear functionals on spaces with a mixed norm, Sibirsk. Mat. Zh., 16 (1975), 483-493 (Russian); English transl.: Siberian. Math. J., 16 (1975) 368-376.
Bukhvalov A. V.: Generalization of the Kolmogorov-Nagumo theorem on the tensor product, Qualitative and Approximate Methods for the Investigation of Operator Equations, 4, Jaroslavl', (1979), 48-65 (Russian).
Bukhvalov A. V.: On the connection of symmetric spaces on the square with speces with mixed norm, Reports of Conference of Tartu State Univ., (1980) 100-102 (Russian).
Bukhvalov A. V.: Interpolation of operators in spaces of vector-valued functions, with applications to singular integral operators, Dokl. Akad. Nauk SSSR, 278 (1984), no.3, 523-526 (Russian); English transl.: Soviet Math. Dokl., 30 (1984), no. 2, 401-404.
Bukhvalov A. V.: Interpolation of generalized Sobolev and Besov spaces with an application to the trace theorem for Sobolev spaces, Dokl. Akad. Nauk SSSR, 279 (1984), no. 6, 1293-1296 (Russian); English transl.: Soviet Math. Dokl., 30 (1984), no. 3, 790-793.
Bukhvalov A. V.: Interpolation of linear operators in spaces of vector-valued functions with a mixed norm, Sibirsk. Mat. Zh., 28 (1987), no. 1, 37-51 (Russian); English transl.: Siberian. Math. J., 28 (1987), 24-36.
Bukhvalov A. V.: Traces of functions from Sobolev spaces with metric generated by rearrangement invariant norm, Trudy Mat. Inst. Steklov, 180 (1987), 72-73 (Russian) English transl.: Proc. Steklov Inst. Math., (1989), issue 3, 82-83.
Chong K. M. and Rice N. M.: Equimeasurable rearrangements of functions, Queen's Papers in Pure and Appl. Math., no.28, Queen's University, Kingston, Ontario, Canada, 1971.
Firey W. J.: Some means of convex bodies, Trans. Amer. Math. Soc., 129 (1967), 181-217.
Hensgen W.: Some properties of the vector-valued Banach ideal space E(X) derived from those of E and X, Collect. Math., 43 (1992) no. 1, 1-13.
Hoffman-Jørgensen J.: Sums of independent Banach space valued random variables, Studia Math., 52 (1974) no. 2, 159-186.
Kantorovich L. V., Akilov G. P.: Functional Analysis, 2nd rev. ed, 'Nauka', Moscow (1977) (Russian); English transl.: Pergamon Press, Oxford (1982).
Kolmogoroff A.: Sur notion de la moyenne, Rend. Acad. dei Lincei, 6 (1930), 388-391.
Krivine J. L.: Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. Math., 104 (1976), 1-29.
Lindenstrauss J., Tzafiri L.: Classical Banach spaces. II. Function spaces, Springer, Berlin 1979.
Lorentz G. G.: On the theory of spaces Λ, Pacific J. Math., 1 (1951), 411-429.
Lozanovskii G. Ya.: On some Banach lattices. I, Sibirsk. Mat. Zh., 10 (1969), 584-599 (Russian); English transl.: Siberian. Math. J., 10 (1969), 419-431.
Lozanovskii G. Ya.: On some Banach lattices. II, Sibirsk. Mat. Zh., 12 (1971), 562-567 (Russian); English transl.: Siberian. Math. J., 12 (1971), 397-410.
Lozanovskii G. Ya.: On some Banach lattices. III, Sibirsk. Mat. Zh., 13 (1972), 1304-1313 (Russian); English transl.: Siberian. Math. J., 13 (1972), 910-916.
Lozanovskii G. Ya.: On some Banach lattices. IV, Sibirsk. Mat. Zh., 14 (1973), 140-155 (Russian); English transl.: Siberian. Math. J., 14 (1973), 97-108.
Luxemburg W. A. J.: On the measurability of a function which occurs in a paper by A.C. Zaanen, Proc. Nederl. Akad. Wetensch., A61 (1958), 259-265.
Luxemburg W. A. J.: Addendum to “On the measurability of a function which occurs in a paper by A.C. Zaanen”, Proc. Nederl. Akad. Wetensch., A66 (1963), 587-590.
Meyer-Nieberg P.: Ein verbands theoretischer Beweis einer Charakterisierung von Lp Räumen, Arch. Math., 26 (1975), 284-288.
Milman M.: Embeddings of Lorentz-Marcinkiewich spaces with mixed norms, Analysis Mathematica, 4 (1978), 215-223.
Milman M.: A note on L(p, q) spaces and Orlicz spaces with mixed norms, Proc. Am. Math. Soc., 83 (1981), no. 4, 743-746.
Mityagin B. S.: The homotopy structure of the linear group of a Banach space, Uspekhi Mat. Nauk, 25 (1970), no. 5, 63-106 (Russian); English transl.: Russian Math. Surveys, 25 (1970), no. 5, 59-103.
Nagumo M.: Ñber eine Klasse der Mittelweste, Japan J. Math., 7 (1930).
Nielsen N. J.: On Banach ideals determined by Banach lattices and their applications, Diss. Math., 109 (1973).
Pisier G.: Une propriété de stabilité de la classe des espaces ne contenant l1, C. R. Acad. Sci. Paris, A286 (1978), 747-749.
Rao M. M., Ren Z. D.: Theory of Orlicz spaces, Pure Appl. Math., Marcel Dekker, New York, Basel, 1991.
Reisner S.: On the duals of Lorentz functions and sequence spaces, Indiana Univ. Math. J., 31 (1982) no. 1, 65-72.
Schaefer H. H.: Banach lattices and positive operators, Springer, Berlin 1974.
Sukochev F. A.: RUC-bases in Orlicz and Lorentz operator spaces, Positivity, 2 (1998), 265-279
Turrett B., Uhl J. J., Jr.: L p(µ,X) (1 < p < ∞) has the Radon-Nikodym property if X does by martingales, Proc. Am. Math. Soc., 61 (1976), no. 2, 347-350.