Phân tích hồ sơ đột biến mục tiêu mắc phải của các tổn thương tiền phát của ung thư đại trực tràng

BMC Medical Genomics - Tập 15 - Trang 1-11 - 2022
Wellington dos Santos1, Mariana Bisarro dos Reis1, Jun Porto1, Ana Carolina de Carvalho1, Marcus Matsushita2, Gabriela Oliveira3, Kari Syrjänen1,4,5, Rui Manuel Reis1,6,7, Denise Peixoto Guimarães1,8
1Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
2Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
3Research and Education Institute, Barretos Cancer Hospital, Barretos, Brazil
4SMW Consultants Ltd, Kaarina, Finland
5Department of Clinical Research, Biohit Oyj, Helsinki, Finland
6Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
7ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal
8Department of Endoscopy, Barretos Cancer Hospital, Barretos, Brazil

Tóm tắt

Hầu hết các trường hợp ung thư đại trực tràng (CRC) xuất phát từ các tổn thương tiền phát. Nghiên cứu này nhằm mục đích xác định hồ sơ đột biến của các tổn thương tiền phát của ung thư đại trực tràng trong một quần thể của Brazil. Tổng cộng, 90 tổn thương tiền phát của đại trực tràng được bảo quản bằng formalin và nhúng parafin, bao gồm 67 adenoma, 7 tổn thương răng cưa sessile và 16 polyp hyperplastic, đã được phân tích bằng cách sử dụng quy trình giải trình tự thế hệ mới với một bảng gồm 50 oncogenes và gen ức chế khối u. Di truyền tổ tiên của bệnh nhân cũng được đánh giá. Các đột biến dẫn đến bệnh lý mắc phải đã được xác định trong 66,7% số trường hợp, bao gồm các biến đổi ở APC (32,2%), TP53 (20,0%), KRAS (18,9%), BRAF (13,3%) và EGFR (7,8%). Các adenoma thể hiện số lượng đột biến cao hơn, chủ yếu là ở APC, so với polyp răng cưa (73,1% so với 47,8%, p = 0,026). Các adenoma tiên tiến có tần suất đột biến KRAS cao hơn đáng kể và tỷ lệ đột biến tổng thể cao hơn so với các adenoma sớm (92,9% so với 59%, p = 0,006). Một mức độ trộn lẫn tổ tiên cao đã được quan sát trong quần thể được nghiên cứu, với tỷ lệ cao của các thành phần châu Âu (trung bình 73%) tiếp theo là châu Phi (trung bình 11,3%). Không có sự liên quan nào được tìm thấy giữa tổ tiên di truyền và loại tổn thương. Hồ sơ đột biến của các tổn thương tiền phát của ung thư đại trực tràng ở Brazil cho thấy sự thay đổi trong APC, KRAS, TP53 và BRAF với các tần suất khác nhau tùy thuộc vào loại tổn thương. Những kết quả này cung cấp kiến thức về lịch sử sinh học của CRC và hỗ trợ tiềm năng của những dấu hiệu sinh học này trong việc phát hiện các tổn thương tiền phát trong việc sàng lọc CRC ở quần thể Brazil.

Từ khóa

#ung thư đại trực tràng #tổn thương tiền phát #đột biến somatic #di truyền tổ tiên #phân tích trình tự gen

Tài liệu tham khảo

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. INCA. Estimativa 2020: Incidência de Câncer no Brasil. Ministério da Saúde: Instituto Nacional de Câncer José de alencar Gomes da Silva (INCA); 2019. Martin FL, Morais CLM, Sakita JY, Uyemura SA, Kannen V. Age-related and gender-related increases in colorectal cancer mortality rates in Brazil between 1979 and 2015: projections for continuing rises in disease. J Gastrointest Cancer. 2020;3:1147. Souza DLB, Jerez-Roig J, Cabral FJ, De Lima JRF, Rutalira MK, Costa JAG. Colorectal cancer mortality in Brazil: predictions until the year 2025 and cancer control implications. Dis Colon Rectum. 2014;57:1082–9. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–91. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during CRC development. N Engl J Med. 1988;319:525–32. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Prim. 2015;1:887. Li D, Liu L, Fevrier HB, Alexeeff SE, Doherty AR, Raju M, et al. Increased risk of colorectal cancer in individuals with a history of serrated polyps. Gastroenterology. 2020;159:502-511.e2. East JE, Vieth M, Rex DK. Serrated lesions in colorectal cancer screening: detection, resection, pathology and surveillance. Gut. 2015;64:991–1000. Kedrin D, Gala MK. Genetics of the serrated pathway to colorectal cancer. Clin Transl Gastroenterol. 2015;6:e84–93. Yamane L, Scapulatempo-Neto C, Reis RM, Guimarães DP. Serrated pathway in colorectal carcinogenesis. World J Gastroenterol. 2014;20:2634–40. WHO Classification of Tumours Editorial Board. WHO classification of Tumours. Digestive System Tumours. 5th edition. Lyon: World Health Organization; 2019. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–100. Patai ÁV, Molnár B, Tulassay Z, Sipos F. Serrated pathway: alternative route to colorectal cancer. World J Gastroenterol. 2013;19:607–15. Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol Mech Dis. 2009;4:343–64. dos Santos W, Sobanski T, de Carvalho AC, Evangelista AF, Matsushita M, Berardinelli GN, et al. Mutation profiling of cancer drivers in Brazilian colorectal cancer. Sci Rep. 2019;9:1–13. Winawer S, Zauber A, Ho M, O’Brien M, Gottlieb LSSS, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med. 1993;329:1977–81. Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJY, Young GP, et al. Colorectal cancer screening: a global overview of existing programmes. Gut. 2015;64:1637–49. Robertson DJ, Lee JK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, et al. Recommendations on fecal immunochemical testing to screen for colorectal neoplasia: a consensus statement by the US multi-society task force on colorectal cancer. Gastroenterology. 2017;152:1217-1237.e3. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370:1287–97. DeVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem. 2009;55:1337–46. Cruvinel-Carloni A, Yamane L, Scapulatempo-Neto C, Guimarães D, Reis RM. Absence of TERT promoter mutations in colorectal precursor lesions and cancer. Genet Mol Biol. 2018;41:82–4. Yamane LS, Scapulatempo-Neto C, Alvarenga L, Oliveira CZ, Berardinelli GN, Almodova E, et al. KRAS and BRAF mutations and MSI status in precursor lesions of colorectal cancer detected by colonoscopy. Oncol Rep. 2014;32:1419–26. Guimarães DP, Mantuan LA, de Oliveira MA, Junior RL, da Costa AM, Rossi S, et al. The performance of colorectal cancer screening in Brazil: the first two years of the implementation program in barretos cancer hospital. Cancer Prev Res. 2021;14:241–52. Guimarães DP, Fregnani JH, Reis RM, Taveira LN, Scapulatempo-Neto C, Matsushita M, et al. Comparison of a new-generation fecal immunochemical test (FIT) with guaiac fecal occult blood test (gFOBT) in detecting colorectal neoplasia among colonoscopy-referral patients. Anticancer Res. 2019;39:261–9. de Oliveira JC, Viana DV, Zanardo C, Santos EMM, de Paula AE, Palmero EI, et al. Genotype-phenotype correlation in 99 familial adenomatous polyposis patients: a prospective prevention protocol. Cancer Med. 2019;8:2114–22. Schneider NB, Pastor T, de Paula AE, Achatz MI, dos Santos ÂR, Vianna FSL, et al. Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch Syndrome. Cancer Med. 2018;7:2078–88. Participants in the Paris Workshop. The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon. Gastrointest Endosc. 2003;58(6 Supplement):S3-43. Neuber AC, Tostes CH, Ribeiro AG, Marczynski GT, Komoto TT, Rogeri CD, et al. The biobank of barretos cancer hospital: 14 years of experience in cancer research. Cell Tissue Bank. 2021;9:447. Durães RO, Berardinelli GN, da Costa AM, Scapulatempo-Neto C, Pereira R, Oliveira MA, et al. Role of genetic ancestry in 1002 Brazilian colorectal cancer patients from barretos cancer hospital. Front Oncol. 2020;10:885. Pereira R, Phillips C, Pinto N, Santos C, dos Santos SEB, Amorim A, et al. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7:3347. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59. Fearon E, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67. Cross W, Kovac M, Mustonen V, Temko D, Davis H, Baker AM, et al. The evolutionary landscape of colorectal tumorigenesis. Nat Ecol Evol. 2018;2:1661–72. Saito T, Niida A, Uchi R, Hirata H, Komatsu H, Sakimura S, et al. A temporal shift of the evolutionary principle shaping intratumor heterogeneity in colorectal cancer. Nat Commun. 2018;9:1–11. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, et al. A Big Bang model of human colorectal tumor growth. Nat Genet. 2015;47:209–16. Lin SH, Raju GS, Huff C, Ye Y, Gu J, Chen JS, et al. The somatic mutation landscape of premalignant colorectal adenoma. Gut. 2018;67:1299–305. Lugli N, Dionellis VS, Ordóñez-Morán P, Kamileri I, Sotiriou SK, Huelsken J, et al. Enhanced rate of acquisition of point mutations in mouse intestinal adenomas compared to normal tissue. Cell Rep. 2017;19:2185–92. Murakami T, Akazawa Y, Yatagai N, Hiromoto T, Sasahara N, Saito T, et al. Molecular characterization of sessile serrated adenoma/polyps with dysplasia/carcinoma based on immunohistochemistry, next-generation sequencing, and microsatellite instability testing: a case series study. Diagn Pathol. 2018;13:1–10. Chang K, Willis JA, Reumers J, Taggart MW, San Lucas FA, Thirumurthi S, et al. Colorectal premalignancy is associated with consensus molecular subtypes 1 and 2. Ann Oncol. 2018;29:2061–7. Komor MA, Bosch LJW, Bounova G, Bolijn AS, Delis-van Diemen PM, Rausch C, et al. Consensus molecular subtype classification of colorectal adenomas. J Pathol. 2018;246:266–76. Druliner BR, Wang P, Bae T, Baheti S, Slettedahl S, Mahoney D, et al. Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations. Sci Rep. 2018;8:1–10. Liu Z, Yang C, Li X, Luo W, Roy B, Xiong T, et al. The landscape of somatic mutation in sporadic Chinese colorectal cancer. Oncotarget. 2018;9:27412–22. van Lanschot MCJ, Carvalho B, Rausch C, Snaebjornsson P, van Engeland M, Kuipers EJ, et al. Molecular profiling of longitudinally observed small colorectal polyps: a cohort study. EBioMedicine. 2019;39:292–300. Patai ÁV, Barták BK, Péterfia B, Micsik T, Horváth R, Sumánszki C, et al. Comprehensive DNA methylation and mutation analyses reveal a methylation signature in colorectal sessile serrated adenomas. Pathol Oncol Res. 2017;23:589–94. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371-385.e18. Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. Sievers CK, Zou LS, Pickhardt PJ, Matkowskyj KA, Albrecht DM, Clipson L, et al. Subclonal diversity arises early even in small colorectal tumours and contributes to differential growth fates. Gut. 2017;66:2132–40. Yi C, Huang Y, Yu X, Li X, Zheng S, Ding K, et al. Clinicopathologic distribution of KRAS and BRAF mutations in a Chinese population with colorectal cancer precursor lesions. Oncotarget. 2016;7:17265–74. Rohlin A, Wernersson J, Engwall Y, Wiklund L, Björk J, Nordling M. Parallel sequencing used in detection of mosaic mutations: comparison with four diagnostic DNA screening techniques. Hum Mutat. 2009;30:1012–20. Jamuar SS, Lam A-TN, Kircher M, D’Gama AM, Wang J, Barry BJ, et al. Somatic mutations in cerebral cortical malformations. N Engl J Med. 2014;371:733–43. Yan HHN, Lai JCW, Ho SL, Leung WK, Law WL, Lee JFY, et al. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut. 2017;66:1645–56. Nikolaev SI, Sotiriou SK, Pateras IS, Santoni F, Sougioultzis S, Edgren H, et al. A single-nucleotide substitution mutator phenotype revealed by exome sequencing of human colon adenomas. Cancer Res. 2012;72:6279–89. Kim R, Schell MJ, Teer JK, Greenawalt DM, Yang M, Yeatman TJ. Co-evolution of somatic variation in primary and metastatic colorectal cancer may expand biopsy indications in the molecular era. PLoS ONE. 2015;10:1–12. Uchi R, Takahashi Y, Niida A, Shimamura T, Hirata H, Sugimachi K, et al. Integrated multiregional analysis proposing a new model of colorectal cancer evolution. PLoS Genet. 2016;12:1–24. Konishi K, Yamochi T, Makino R, Kaneko K, Yamamoto T, Nozawa H, et al. Molecular differences between sporadic serrated and conventional colorectal adenomas. Clin Cancer Res. 2004;10:3082–90. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7. Yamamoto E, Suzuki H, Yamano HO, Maruyama R, Nojima M, Kamimae S, et al. Molecular dissection of premalignant colorectal lesions reveals early onset of the CpG island methylator phenotype. Am J Pathol. 2012;181:1847–61. Kim TM, An CH, Rhee JK, Jung SH, Lee SH, Baek IP, et al. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma. Oncotarget. 2015;6:27725–35. Whitehall VLJ, Rickman C, Bond CE, Ramsnes I, Greco SA, Umapathy A, et al. Oncogenic PIK3CA mutations in colorectal cancers and polyps. Int J Cancer. 2012;131:813–20. Chang P-Y, Chen J-S, Chang S-C, Wang M-C, Chang N-C, Wen Y-H, et al. Acquired somatic TP53 or PIK3CA mutations are potential predictors of when polyps evolve into colorectal cancer. Oncotarget. 2017;8:72352–62. Hashimoto T, Yamashita S, Yoshida H, Taniguchi H, Ushijima T, Yamada T, et al. WNT pathway gene mutations are associated with the presence of dysplasia in colorectal sessile serrated adenoma/polyps. Am J Surg Pathol. 2017;41:1188–97. Hernandez-Suarez G, Sanabria MC, Serrano M, Herran OF, Perez J, Plata JL, et al. Genetic ancestry is associated with colorectal adenomas and adenocarcinomas in Latino populations. Eur J Hum Genet. 2014;22:1208–16. Lebwohl B, Capiak K, Neugut AI, Kastrinos F. Risk of colorectal adenomas and advanced neoplasia in Hispanic, black and white patients undergoing screening colonoscopy. Aliment Pharmacol Ther. 2012;35:1467–73. Schroy PC, Coe A, Chen CA, O’Brien MJ, Heeren TC. Prevalence of advanced colorectal neoplasia in white and black patients undergoing screening colonoscopy in a Safety-Net Hospital. Ann Intern Med. 2013;159:13. Alves-Silva J, da Silva SM, Guimarães PEM, Ferreira ACS, Bandelt HJ, Pena SDJ, et al. The ancestry of Brazilian mtDNA lineages. Am J Hum Genet. 2000;67:444–61. Giolo SR, Soler JMP, Greenway SC, Almeida MAA, De Andrade M, Seidman JG, et al. Brazilian urban population genetic structure reveals a high degree of admixture. Eur J Hum Genet. 2012;20:111–6. Saulsberry L, Olopade OI. Precision oncology: directing genomics and pharmacogenomics toward reducing cancer inequities. Cancer Cell. 2021;39:730–3. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538:161–4.