Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO 2 Catalysts

American Association for the Advancement of Science (AAAS) - Tập 311 Số 5759 - Trang 362-365 - 2006
Dan I. Enache1,2, Jennifer K. Edwards1,2, Philip Landon1,2, Benjamín Solsona1,2, Albert F. Carley1,2, Andrew A. Herzing3,1, Masashi Watanabe3,1, Christopher J. Kiely3,1, David W. Knight1,2, Graham J. Hutchings1,2
1Center for Advanced Materials and Nanotechnology, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015–3195, USA.
2School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, UK, CF10 3AT,
3Center for Advanced Materials and Nanotechnology, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA

Tóm tắt

The oxidation of alcohols to aldehydes with O 2 in place of stoichiometric oxygen donors is a crucial process for the synthesis of fine chemicals. However, the catalysts that have been identified so far are relatively inactive with primary alkyl alcohols. We showed that Au/Pd-TiO 2 catalysts give very high turnover frequencies (up to 270,000 turnovers per hour) for the oxidation of alcohols, including primary alkyl alcohols. The addition of Au to Pd nanocrystals improved the overall selectivity and, using scanning transmission electron microscopy combined with x-ray photoelectron spectroscopy, we showed that the Au-Pd nanocrystals were made up of a Au-rich core with a Pd-rich shell, indicating that the Au electronically influences the catalytic properties of Pd.

Từ khóa


Tài liệu tham khảo

R. A. Sheldon J. K. Kochi Metal-Catalyzed Oxidations of Organic Compounds (Academic Press New York 1981).

M. Beller C. Bolm Transition Metals for Organic Synthesis (Verlag GmbH & Co. KGaA Weinheim Germany ed. 2 2004).

10.1126/science.287.5458.1636

M. Vazylyev, D. Sloboda-Rozner, A. Haimov, G. Maayan, R. Neumann, Top. Catal.34, 93 (2005).

M. Pagliaro, S. Campestrini, R. Ciriminna, Chem. Soc. Rev.34, 837 (2005).

K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc.26, 10657 (2004).

10.1126/science.274.5295.2044

M. J. Schultz, R. S. Adler, W. Zierkiewicz, T. Privalov, M. S. Sigman, J. Am. Chem. Soc.127, 8499 (2005).

U. R. Pillai, E. Sahle-Demessie, Appl. Catal. Gen.245, 103 (2003).

M. Hudlicky Oxidations in Organic Chemistry (American Chemical Society Washington DC 1990).

W. P. Griffith, J. M. Joliffe, Stud. Surf. Sci. Catal.66, 395 (1991).

G. Cainelli G. Cardillo Chromium Oxidants in Organic Chemistry (Springer Berlin 1984).

D. G. Lee, U. A. Spitzer, J. Org. Chem.35, 3589 (1970).

F. M. Menger, C. Lee, Tetrahedron Lett.22, 1655 (1981).

R. Neumann, M. Levin-Elad, Appl. Catal. A122, 85 (1995).

L. Prati, M. Rossi, J. Catal.176, 552 (1998).

F. Porta, L. Prati, M. Rossi, G. Scari, J. Catal.211, 464 (2002).

S. Carretin, P. McMorn, P. Johnston, K. Griffin, G. J. Hutchings, Chem. Commun.2002, 696 (2002).

F. Porta, L. Prati, J. Catal.224, 397 (2004).

S. Biella, M. Rossi, Chem. Commun.2003, 378 (2003).

A. Abad, P. Conception, A. Corma, H. Garcia, Angew. Chem.44, 4066 (2005).

P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, G. J. Hutchings, Chem. Commun.2002, 2058 (2002).

P. Landonet al., Phys. Chem. Chem. Phys.5, 1917 (2003).

J. K. Edwardset al., J. Mater. Chem.15, 4595 (2005).

J. K. Edwardset al., J. Catal.236, 69 (2005).

To confirm that surface segregation of Pd was truly occurring in these nanoparticles multivariate statistical analysis (MSA) was performed on the data set shown in Fig. 2B. MSA is a group of processing techniques that can be used to identify specific features within large data sets such as x-ray spectrum images and to reduce random noise components in the data sets in a statistical manner. MSA has recently been shown to be particularly useful for analysis of x-ray maps taken from nanoparticles ( 29 ). This statistical technique performs a data-smoothing calculation by portioning the XEDS data using a probability density function.

K. Okazaki, S. Ichikawa, Y. Maeda, M. Haruta, M. Kohyama, Appl. Catal. A291, 45 (2005).

10.1126/science.1115800

N. Bonnet, J. Microsc.190, 2 (1998).

Sponsored by the European Union AURICAT project (contract HPRN-CT-2002-00174) and the Engineering and Physical Sciences Research Council (EPSRC) as part of the ATHENA project co-sponsored by Johnson Matthey as well as by an EPSRC-sponsored program on Speculative Green Chemistry and we thank them for funding this research. We also thank the World Gold Council (through the GROW scheme) and Cardiff University (AA Reed studentship) for providing support for J.K.E. D.I.E. thanks the Crystal Faraday Partnership for funding. Finally C.J.K. M.A.W. and A.A.H. gratefully acknowledge NSF funding through the Materials Research Science and Engineering Center (NSF grants DMR-0079996 DMR-0304738 and DMR-0320906).