Solvable Symmetry Structures in Differential Form Applications

Acta Applicandae Mathematicae - Tập 66 - Trang 89-121 - 2001
M. A. Barco1, G. E. Prince1
1School of Mathematics, La Trobe University, Bundoora, Australia

Tóm tắt

We investigate symmetry techniques for expressing various exterior differential forms in terms of simplified coordinate systems. In particular, we give extensions of the Lie symmetry approach to integrating Frobenius integrable distributions based on a solvable structure of symmetries and show how a solvable structure of symmetries may be used to find local coordinates for the Pfaffian problem and Darboux's theorem.

Tài liệu tham khảo

Basarab-Horwath, P.: Integrability by quadratures for systems of involutive vector fields, Ukrain. Mat. Zh. 43(10) (1991), 1330–1337; translation in Ukrainian Math. J. 43(10) (1991), (1992), 1236-1242. Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., and Griffiths, P. A.: Exterior Differential Systems, Vol. 18, Springer-Verlag, New York, 1991. Cartan, É.: Leçons sur les invariants intégreaux, Hermann, Paris, 1922. Cartan, É.: Les systems differentials extérieures at leurs applications géométrique, Hermann, Paris, 1945. Crampin, M. and Pirani, F.A. E.: Applicable Differential Geometry, London Math. Soc. Lecture Note Ser. 59, Cambridge Univ. Press, Cambridge, 1986. Duzhin, S. V. and Lychagin, V. V.: Symmetries of distributions and quadrature of ordinary differential equations, Acta Appl. Math. 24 (1991), 29–57. Edelen, D. G. B.: Applied Exterior Calculus, Wiley, New York, 1985. Godbillon, C.: Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969. Hartl, T. and Athorne, C.: Solvable structures and hidden symmetries, J. Phys. A: Math. Gen. 27 (1994), 3463–3471. Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1891. Olver, P. J.: Application of Lie Groups to Differential Equations, Springer-Verlag, Berlin, 1986. Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, 1995. Sherring, J. and Prince, G.: Geometric aspects of reduction of order, Trans. Amer. Math. Soc. 334(1) (1992), 433–453. Sherring, J.: Dimsym: Symmetry Determination and Liner Differential Equation Package, School of Mathematics, La Trobe University, 1993. Vaisman, I.: Cohomology and Differential Forms, Marcel Dekker, New York, 1973.