Solutions of the Schrödinger equation for Dirac delta decorated linear potential
Tóm tắt
We have studied bound states of the Schrödinger equation for a linear potential together with any finite number (P) of Dirac delta functions. Forx<-0, the potential is given as
where 0
Tài liệu tham khảo
W. Greiner and B. Müller:Quantum Mechanics: Symmetries, 2nd revised Ed., Springer-Verlag, Berlin, 1994.
B. Govoreanu, P. Blomme, M. Rosmeulen, V.J. Houdt and K. De Meyer: “A model for tunneling current in multi-layer tunnel dielectrics”, Solid State Electronic, Vol. 47, (2003), pp. 1045–1053.
P. Fendley: “Airy Functions in Thermodynamics Bethe Ansatz”Lett. Math. Phys. Vol. 49, (1999), pp. 229–233.
J.Z. Imbrie: “Dimensional reduction and crossover to mean-field behavior for branched polymers”, Ann. Henri Poincare, Vol. 4, (2003), pp. 445–458.
S. Flügge:Practical Quantum Mechanics, Springer, New York, 1974.
S. Alveberio, F. Gesztsy, P. Høegh-Krohn and H. Holden:Solvable Models in Quantum Mechanics, Springer, New York, 1988.
E. Demiralp and H. Beker: “Properties of bound states of the Schrödinger equation with attractive Dirac delta potentials”, J. Phys. A: Math. Gen., Vol. 36, (2003), pp. 7449–7459.
C. Cohen-Tannoudji, B. Diu and F. Laloë:Quantum Mechanics I, Hermann, Paris, 1977.
C. Kittel:Introduction to Solid State Physics, 7th Ed., John Wiley, New York, 1996.
T. Uchino and I. Tsutsui: “Supersymmetric quantum mechanics under point singularities”, J. Phys. A: Math. Gen., Vol. 36, (2003), pp. 6821–6846.
J.R. Barker: “The physics and fabrication of microstructures and microdevices”, In: M.S. Kelly and C. Weisbuch (Eds.):Proceedings in Physics, 13 Springer: New York, 1986, pp. 210–220.
W. Ellberfeld and M. Kleber:Zeitschrift für Physik B, Vol. 73, (1988), pp. 23–32.
G. Álvarez and B. Sundaram: “Perturbation theory for the Stark effect in a double δ quantum well”, J. Phys. A: Math. Gen., Vol. 37, (2004), pp. 9735–9748.
C. Weisbuch and B. Vinter:Quantum Semiconductor Structures: fundamentals and Applications, Academic Press, San Diego, 1991.
S.B. Monozon, V.M. Ivanov and P. Schmelcher: “Impurity center in a semiconductor quantum ring in the presence of a radial electric field”, Physical Review B, Vol. 70, (2004), pp. 205336–205347.