Solution-processed hybrid perovskite photodetectors with high detectivity

Nature Communications - Tập 5 Số 1
Letian Dou1, Yang Yang1, Jingbi You1, Ziruo Hong1, Wei-Hsuan Chang1, Gang Li1
1Department of Materials Science and Engineering, University of California, Los Angeles, 90095, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Donati, S. Photodetectors: devices, circuits, and applications. Meas. Sci. Technol. 12, 653 (2001).

Haugan, H. J. Study of residual background carriers in midinfrared InAs/GaSb superlattices for uncooled detector operation. Appl. Phys. Lett. 92, 071102 (2008).

Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).

Jin, Y. Z., Wang, J. P., Sun, B. Q., Blakesley, J. C. & Greenham, N. C. Solution- processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 8, 1649 (2008).

Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542 (2009).

Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotech. 7, 798 (2012).

Yao, Y. et al. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv. Mater. 19, 3979 (2007).

Chen, H. Y., Lo, M. K., Yang, G., Monbouquette, H. G. & Yang, Y. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat. Nanotech. 3, 543 (2008).

Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665 (2009).

Arnold, M. S. et al. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett. 9, 3354 (2009).

Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945 (1999).

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).

Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 487 (2013).

Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622 (2014).

Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).

Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013).

Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8, 133 (2014).

Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).

Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344 (2013).

Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).

Takahashia, Y., Hasegaw, H., Takahashia, Y. & Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor. J. Solid State Chem. 205, 39 (2013).

Yin, W.-J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

You, J. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674 (2014).

Ikai, M. et al. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl. Phys. Lett. 79, 156 (2001).

He, Z. C. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density and fill factor in polymer solar cell. Adv. Mater. 23, 4636 (2011).

Hegedus, S. S. & Shafarman, W. N. Thin-film solar cells: device measurements and analysis. Prog Photovoltaics Res Appl. 12, 155 (2004).

Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623 (2013).

Mihailietchi, V. D. et al. Electron transport in a methanofullerene. Adv. Funct. Mater. 13, 43 (2003).

Malik, S., Ray, A. K. & Bruce, S. 1/f noise in Langmuir–Blodgett films on silicon. Semicond. Sci. Technol. 20, 453 (2005).

Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511 (2014).