Solid oxide fuel cells that enable the detection of CO in reformed gases

Earthquake Spectra - Tập 86 - Trang 12-19 - 2002
Atsuko Hashimoto1, Takashi Hibino1, Mitsuru Sano2
1National Institute of Advanced Industrial Science and Technology (AIST), 2268-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan
2Nagoya University, Furo-cho, Chikusa-ku, Nagoya 466-0804, Japan

Tài liệu tham khảo

Göpel, 1985, Chemisorption and charge transfer at ionic semiconductor surfaces. Implications in designing gas sensors, Prog. Surf. Sci., 20, 9, 10.1016/0079-6816(85)90004-8 Kohl, 1989, Surface processes in the detection of reducing gases with SnO2-based devices, Sensor. Actuator., 18, 71, 10.1016/0250-6874(89)87026-X N. Yamazoe, N. Miura, in: S. Yamauchi (Ed.), Chemical Sensor Technology, Vol. 4, Kodansha, Tokyo, 1991, p. 19. Williams, 1999, Semiconducting oxides as gas-sensitive resistors, Sensor. Actuator. B, 57, 1, 10.1016/S0925-4005(99)00133-1 Okamoto, 1980, Carbon monoxide gas sensor made of stabilized zirconia, Solid State Ionics, 1, 319, 10.1016/0167-2738(80)90012-0 Li, 1993, High temperature carbon monoxide potentiometric sensor, J. Electrochem. Soc., 140, 1068, 10.1149/1.2056199 Miura, 1997, Zirconia-based potentiometric sensor using a pair of oxide electrodes for selective detection of carbon monoxide, J. Electrochem. Soc., 143, L198, 10.1149/1.1837798 Mukundan, 2000, A mixed-potential sensor based on a Ce0.8Gd0.2O1.9 electrolyte and platinum and gold electrodes, J. Electrochem. Soc., 147, 1583, 10.1149/1.1393398 Fleming, 1977, Physical principles governing nonideal behavior of the zirconia oxygen sensor, J. Electrochem. Soc., 124, 21, 10.1149/1.2133235 Steele, 2000, Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ionics, 129, 95, 10.1016/S0167-2738(99)00319-7 Hibino, 2000, A low-temperature solid oxide fuel cell in hydrocarbon–air mixtures, Science, 288, 2031, 10.1126/science.288.5473.2031 Xia, 2001, Reduced-temperature solid oxide fuel cells fabricated by screen printing, Electrochem. Solid-State Lett., 4, A52, 10.1149/1.1361158 McKee, 1969, Electrocatalysts for hydrogen/carbon monoxide fuel cell anodes, IV: Platinum–nickel combinations, J. Electrochem. Soc., 116, 516, 10.1149/1.2411937 Hibino, 2001, Proton conduction at the surface of Y-doped BaCeO3, J. Phys. Chem. B, 105, 11399, 10.1021/jp0124342 Gasteiger, 1994, CO electrooxidation on well-characterized Pt–Ru alloys, J. Phys. Chem., 98, 617, 10.1021/j100053a042 Laniello, 1994, CO adsorption and oxidation on Pt and Pt–Ru alloys: dependence on substrate composition, Electrochim. Acta, 39, 1863, 10.1016/0013-4686(94)85176-X Iwashita, 1994, Progress in the study of electrocatalytic reactions of organic species, Electrochim. Acta, 39, 1817, 10.1016/0013-4686(94)85170-0 Oetjen, 1996, Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas, J. Electrochem. Soc., 143, 3838, 10.1149/1.1837305 Mukerjee, 1999, Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst, Electrochem. Solid-State Lett., 2, 12, 10.1149/1.1390718 Scholten, 1993, Synthesis of strontium and barium cerate and their reaction with carbon dioxide, Solid State Ionics, 61, 83, 10.1016/0167-2738(93)90338-4 Bonanos, 1995, Perovskite solid electrolyte: structure, transport properties and fuel cell applications, Solid State Ionics, 79, 161, 10.1016/0167-2738(95)00056-C