Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems

Global Change Biology - Tập 28 Số 1 - Trang 140-153 - 2022
Shuo Jiao1,2, Yahai Lu1, Gehong Wei2
1College of Urban and Environmental Sciences, Peking University, Beijing, China
2State Key Laboratory of Crop Stress Biology in Arid Areas Shaanxi Key Laboratory of Agricultural and Environmental Microbiology College of Life Sciences Northwest A&F University Yangling China

Tóm tắt

AbstractBelowground biodiversity supports multiple ecosystem functions and services that humans rely on. However, there is a dearth of studies exploring the determinants of the biodiversity–ecosystem function (BEF) relationships, particularly in intensely managed agricultural ecosystems. Here, we reported significant and positive relationships between soil biodiversity of multiple organism groups and multiple ecosystem functions in 228 agricultural fields, relating to crop yield, nutrient provisioning, element cycling, and pathogen control. The relationships were influenced by the types of organisms that soil phylotypes with larger sizes or at higher trophic levels, for example, invertebrates or protist predators, appeared to exhibit weaker or no BEF relationships when compared to those with smaller sizes or at lower trophic levels, for example, archaea, bacteria, fungi, and protist phototrophs. Particularly, we highlighted the role of soil network complexity, reflected by co‐occurrence patterns among multitrophic‐level organisms, in enhancing the link between soil biodiversity and ecosystem functions. Our results represent a significant advance in forecasting the impacts of belowground multitrophic organisms on ecosystem functions in agricultural systems, and suggest that soil multitrophic network complexity should be considered a key factor in enhancing ecosystem productivity and sustainability under land‐use intensification.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.1312213111

Allen S. E., 1986, Methods in Plant Ecology, 589

Archer E.(2013).rfPermute: Estimate permutation p‐values for Random Forest importance metrics. R package version 1.5. 2.https://CRAN.R‐project.org/package=rfPermute

Bao S. D., 2000, Soil and agricultural chemistry analysis, 355

10.1038/ismej.2013.236

10.1038/nature13855

10.1038/s41559‐018‐0772‐3

10.1111/mec.15299

10.1111/j.1461‐0248.2012.01759.x

10.3791/50961

10.1016/j.tree.2016.02.016

10.1016/S0169‐5347(02)00045‐9

10.1111/2041‐210x.12143

10.1038/nature09904

10.1038/nature11148

10.3732/ajb.1000364

10.1111/j.1365‐2745.2010.01699.x

10.1073/pnas.1506279112

Csardi G., 2006, The igraph software package for complex network research, InterJournal, Complex Systems, 1695, 1

10.1038/nclimate1368

10.1073/pnas.1305198110

10.1016/j.soilbio.2011.01.016

10.1111/1365‐2745.12585

10.1038/ncomms10541

10.1126/science.aap9516

10.1038/s41559‐019‐1084‐y

10.1007/s13225‐018‐0399‐3

10.1086/286117

10.1101/354167

10.1093/bioinformatics/btr381

10.18637/jss.v066.i07

10.1038/s41467‐019‐09031‐1

10.1111/1365‐2745.12288

10.1186/s40168‐018‐0526‐0

10.1111/gcb.15130

10.1128/mSystems.00313‐18

10.1186/s40168‐019‐0630‐9

10.1038/ncomms9159

10.1038/ncomms13630

10.1016/j.tree.2010.09.001

10.1038/ncomms7936

10.2307/3079056

10.1111/ele.13177

10.1038/35083573

10.1038/ismej.2015.261

10.1126/science.1215442

10.1038/s41559‐017‐0461‐7

10.1073/pnas.1712211114

10.1038/s41559‐017‐0391‐4

10.1126/science.1215855

10.1038/nature14324

10.1137/S003614450342480

10.1073/pnas.0601602103

10.1016/j.funeco.2015.06.006

10.1126/sciadv.aax8787

10.18637/jss.v048.i02

Schermelleh‐Engel K., 2003, Evaluating the fit of structural equation models: Tests of significance and descriptive goodness‐of‐fit measures, Methods of Psychological Research Online, 8, 23

10.1186/s40168‐018‐0409‐4

10.2136/sssaj2004.0347

10.1038/nature19092

10.1111/j.1365‐294X.2009.04480.x

10.1073/pnas.94.5.1857

10.1111/gcb.12752

10.1073/pnas.1109326109

10.1073/pnas.1320054111

10.1038/s41467‐019‐12798‐y

10.1038/nature15744

10.1073/pnas.1807354116

10.1073/pnas.0607651104

10.1073/pnas.96.4.1463

10.1038/s41396‐019‐0356‐5

10.1016/j.soilbio.2019.107521