Soil Moisture Remote Sensing: State‐of‐the‐Science

Vadose Zone Journal - Tập 16 Số 1 - Trang 1-9 - 2017
Binayak P. Mohanty1, Michael H. Cosh2, V. Lakshmi3, Carsten Montzka4
1Dep. of Biological and Agricultural Engineering Texas A&M Univ. College Station TX 77843
2USDA–ARS Hydrology and Remote Sensing Lab. Beltsville MD 20705
3Earth and Ocean Science Univ. of South Carolina Columbia SC 29208
4Institute of Bio‐ and Geosciences: Agrosphere (IBG‐3) Forschungszentrum Jülich 52428 Jülich Germany

Tóm tắt

Core Ideas

Satellites, particularly at L‐band frequency, can globally map near‐surface soil moisture.

Near‐surface moisture is extended to the root zone using models and data assimilation.

Validation uses core monitoring sites, monitoring networks, field campaigns, and multi‐satellite comparisons.

Efforts are underway to associate soil moisture variability dynamics with land surface attributes.

This is an update to the special section “Remote Sensing for Vadose Zone Hydrology—A Synthesis from the Vantage Point” [Vadose Zone Journal 12(3)]. Satellites (e.g., Soil Moisture Active Passive [SMAP] and Soil Moisture and Ocean Salinity [SMOS]) using passive microwave techniques, in particular at L‐band frequency, have shown good promise for global mapping of near‐surface (0–5‐cm) soil moisture at a spatial resolution of 25 to 40 km and temporal resolution of 2 to 3 d. C‐ and X‐band soil moisture records date back to 1978, making available an invaluable data set for long‐term climate research. Near‐surface soil moisture is further extended to the root zone (top 1 m) using process‐based models and data assimilation schemes. Validation of remotely sensed soil moisture products has been ongoing using core monitoring sites, sparse monitoring networks, intensive field campaigns, as well as multi‐satellite comparison studies. To transfer empirical observations across space and time scales and to develop improved retrieval algorithms at various resolutions, several efforts are underway to associate soil moisture variability dynamics with land surface attributes in various energy‐ and water‐rich environments. We describe the most recent scientific and technological advances in soil moisture remote sensing. We anticipate that remotely sensed soil moisture will find many applications in vadose zone hydrology in the coming decades.

Từ khóa


Tài liệu tham khảo

10.1016/j.jhydrol.2014.10.024

10.5194/hess‐13‐115‐2009

10.5194/hess‐19‐1659‐2015

10.1002/2014WR016443

10.1016/j.jhydrol.2014.02.026

10.1080/10106049.2014.997302

10.1109/LGRS.2014.2364151

10.1002/wat2.1097

10.5194/hess‐14‐1881‐2010

10.1109/TGRS.2010.2050488

10.1109/TGRS.2016.2561938

10.1016/j.jag.2015.10.004

10.1016/j.jhydrol.2005.08.020

10.2136/vzj2015.09.0122

10.2134/jeq2013.08.0318

10.2136/vzj2005.0033

10.1097/SS.0b013e3181e83dd3

10.1016/j.jhydrol.2014.02.015

10.1175/JHM‐D‐15‐0037.1

10.1002/qj.2023

10.2136/vzj2013.08.0148

10.1016/j.rse.2014.07.023

10.5194/hess‐15‐1675‐2011

10.1016/j.advwatres.2015.07.021

10.1109/JPROC.2010.2043918

Entekhabi D., 2014, SMAP handbook: Mapping soil moisture and freeze/thaw from space

10.1002/hyp.10929

10.2136/vzj2013.05.0089

10.1002/wrcr.20069

10.1002/2015WR018095

10.1016/j.advwatres.2016.08.001

Gruber A., 2013, Characterizing coarse‐scale representativeness of in situ soil moisture measurements from the International Soil Moisture Network, Vadose Zone J., 12, 10.2136/vzj2012.0170

10.1016/j.jag.2015.09.002

10.1109/TGRS.2012.2183877

10.1109/JSTARS.2012.2190136

10.1007/s12665‐016‐5917‐6

10.1029/2012WR012379

10.1109/TGRS.2011.2168533

10.1109/TGRS.2010.2051035

10.1029/2010WR009152

10.1002/2015WR017169

10.1016/j.jag.2015.06.002

10.1016/j.agrformet.2013.12.009

10.1109/LGRS.2016.2557321

10.1109/TGRS.2015.2503762

10.1016/j.rse.2012.03.014

10.1002/2014GL061322

10.1016/j.rse.2015.12.025

10.1016/j.rse.2012.11.008

10.2136/vzj2013.06.0100

10.1109/TGRS.2016.2529659

10.1109/MGRS.2015.2437353

10.3390/rs70505758

10.1002/2014WR016534

10.2136/sssaj2013.03.0093

10.1016/j.rse.2013.02.027

10.1016/j.rse.2015.10.028

10.1016/j.rse.2008.10.010

10.1016/j.jag.2014.01.007

10.1109/TGRS.2015.2462074

10.5194/hess‐19‐4765‐2015

10.1016/j.rse.2016.02.048

10.1109/JSTARS.2014.2325398

10.1016/j.advwatres.2014.12.003

10.1002/2014WR015392

10.1175/BAMS‐85‐3‐381

10.1109/TGRS.2015.2430845

10.5194/hess‐18‐4363‐2014

10.1109/LGRS.2016.2583433

10.1016/j.jhydrol.2013.12.047

10.1016/j.rse.2016.01.008

10.1002/wrcr.20495

10.2136/vzj2012.0094

10.1007/s11269‐013‐0337‐9

10.1016/j.jag.2015.08.005

10.1109/TGRS.2014.2378913

10.1016/S0034‐4257(99)00036‐X

10.1016/j.rse.2015.01.016

10.1016/j.jag.2015.10.011

10.1080/01431161.2015.1041178

10.5194/hess‐16‐4079‐2012