Social perception of embodied digital technologies—a closer look at bionics and social robotics

Springer Science and Business Media LLC - Tập 53 Số 3 - Trang 343-358 - 2022
Maximilian Bretschneider1, Sarah Mandl2, Anja Strobel2, Frank Asbrock3, Bertolt Meyer1
1Professorship of Work and Organizational Psychology, Institute of Psychology, Chemnitz University of Technology, Chemnitz, Germany
2Professorship of Personality Psychology and Assessment, Institute of Psychology, Chemnitz University of Technology, Chemnitz, Germany
3Professorship of Social Psychology, Institute of Psychology, Chemnitz University of Technology, Chemnitz, Germany

Tóm tắt

AbstractThis contribution of the journal Gruppe. Interaktion. Organisation. (GIO) presents a study on the social perception of Embodied Digital Technologies (EDTs) and provides initial insights into social perception processes concerning technicality and anthropomorphism of robots and users of prostheses. EDTs such as bionic technologies and robots are becoming increasingly common in workspaces and private lives, raising questions surrounding their perception and their acceptance. According to the Stereotype Content Model (SCM), social perception and stereotyping are based on two fundamental dimensions: Warmth (recently distinguished into Morality and Sociability) and Competence. We investigate how human actors, namely able-bodied individuals, users of low-tech prostheses and users of bionic prostheses, as well as artificial actors, such as industrial robots, social robots, and android robots, are perceived in terms of Competence, Sociability, and Morality. Results show that individuals with low-tech prostheses were perceived as competent as users of bionic prostheses, but only users of low-tech prostheses were perceived less competent than able-bodied individuals. Sociability did not differ between users of low-tech or bionic prostheses or able-bodied individuals. Perceived morality was higher for users of low-tech prostheses than users of bionic prostheses or able-bodied individuals. For robots, attributions of competence showed that industrial robots were perceived as more competent than more anthropomorphized robots. Sociability was attributed to robots to a lesser extent. Morality was not attributed to robots, regardless of their level of anthropomorphism.

Từ khóa


Tài liệu tham khảo

Abele, A. E., & Wojciszke, B. (2007). Agency and communion from the perspective of self versus others. Journal of Personality and Social Psychology, 93(5), 751–763. https://doi.org/10.1037/0022-3514.93.5.751.

Abele, A. E., Ellemers, N., Fiske, S. T., Koch, A., & Yzerbyt, V. (2021). Navigating the social world: Toward an integrated framework for evaluating self, individuals, and groups. Psychological Review, 128(2), 290–314. https://doi.org/10.1037/rev0000262.

Aquino, K., & Reed, A. (2002). The self-importance of moral identity. Journal of Personality and Social Psychology, 83(6), 1423–1440. https://doi.org/10.1037//0022-3514.83.6.1423.

Arlamovsky, M. (2019). ROBOLOVE. NGF—Nikolaus Geyrhalter Filmproduktion.

Asbrock, F. (2010). Stereotypes of social groups in Germany in terms of warmth and competence. Social Psychology, 41(2), 76–81. https://doi.org/10.1027/1864-9335/a000011.

Asch, S. E. (1946). Forming impressions of personality. Journal of Abnormal and Social Psychology, 41, 258–290.

Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., & Rahwan, I. (2018). The moral machine experiment. Nature, 563(7729), 59–64. https://doi.org/10.1038/s41586-018-0637-6.

Bartneck, C., Kanda, T., Ishiguro, H., & Hagita, N. (2007). Is the uncanny valley an uncanny cliff? In RO-MAN 2007—The 16th IEEE International Symposium on Robot and Human Interactive Communication (pp. 368–373). https://doi.org/10.1109/ROMAN.2007.4415111.

Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 1(1), 71–81. https://doi.org/10.1007/s12369-008-0001-3.

Beißert, H., Köhler, M., Rempel, M., & Beierlein, C. (2014). Eine deutschsprachige Kurzskala zur Messung des Konstrukts Need for Cognition: Die Need for Cognition Kurzskala (NFC-K). [A German-language short scale for measuring the construct Need for Cognition: The Need for Cognition Short Scale (NFC-K)] (Vol. 2014/32). GESIS—Leibniz-Institut für Sozialwissenschaften. https://www.gesis.org/fileadmin/_migrated/content_uploads/WorkingPapers_2014-32.pdf. Accessed August 2, 2022

Bliese, P. D., Maltarich, M. A., & Hendricks, J. L. (2018). Back to basics with mixed-effects models: nine take-away points. Journal of Business and Psychology, 33(1), 1–23. https://doi.org/10.1007/s10869-017-9491-z.

Carpinella, C. M., Wyman, A. B., Perez, M. A., & Stroessner, S. J. (2017). The robotic social attributes scale (RoSAS): Development and validation. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (pp. 254–262). https://doi.org/10.1145/2909824.3020208.

Cervantes, J.-A., López, S., Rodríguez, L.-F., Cervantes, S., Cervantes, F., & Ramos, F. (2020). Artificial moral agents: a survey of the current status. Science and Engineering Ethics, 26(2), 501–532. https://doi.org/10.1007/s11948-019-00151-x.

Chao, G. T., & Kozlowski, S. W. J. (1986). Employee perceptions on the implementation of robotic manufacturing technology. Journal of Applied Psychology, 71(1), 70–76. https://doi.org/10.1037/0021-9010/86/$00.75.

Chita-Tegmark, M., Law, T., Rabb, N., & Scheutz, M. (2021). Can you trust your trust measure? In Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction (HRI′21), March 8–11, 2021, Boulder, CO, USA (p. 9). New York: ACM. https://doi.org/10.1145/3434073.3444677.

Cuddy, A. J. C., Fiske, S. T., & Glick, P. (2007). The BIAS map: Behaviors from intergroup affect and stereotypes. Journal of Personality and Social Psychology, 92(4), 631–648. https://doi.org/10.1037/0022-3514.92.4.631.

Cuddy, A. J. C., Fiske, S. T., & Glick, P. (2008). Warmth and competence as universal dimensions of social perception: the stereotype content model and the BIAS map. Advances in Experimental Social Psychology, 40, 61–149. https://doi.org/10.1016/S0065-2601(07)00002-0.

Demir, K. A., Döven, G., & Sezen, B. (2019). Industry 5.0 and human-robot co-working. Procedia Computer Science, 158, 688–695. https://doi.org/10.1016/j.procs.2019.09.104.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146.

Fiske, S. T. (2018). Stereotype content: warmth and competence endure. Current Directions in Psychological Science, 27(2), 67–73. https://doi.org/10.1177/0963721417738825.

Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition. Journal of Personality and Social Psychology, 82(6), 878–902. https://doi.org/10.1037/0022-3514.82.6.878.

Franke, T., Attig, C., & Wessel, D. (2019). A personal resource for technology interaction: development and validation of the Affinity for Technology Interaction (ATI) scale. International Journal of Human-Computer Interaction, 35(6), 456–467. https://doi.org/10.1080/10447318.2018.1456150.

Gilotta, S., Spada, S., Ghibaudo, L., Isoardi, M., & Mosso, C. O. (2019). Acceptability beyond usability: a manufacturing case study. In S. Bagnara, R. Tartaglia, S. Albolino, T. Alexander & Y. Fujita (Eds.), Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). IEA 2018. Advances in intelligent systems and computing, Vol. 824. Cham: Springer. https://doi.org/10.1007/978-3-319-96071-5_95.

Hannah, S. T., Avolio, B. J., & May, D. R. (2011). Moral maturation and moral conation: A capacity approach to explaining moral thought and action. Academy of Management Review, 36(4), 663–685. https://doi.org/10.5465/amr.2010.0128.

Heflick, N. A., Goldenberg, J. L., Cooper, D. P., & Puvia, E. (2011). From women to objects: Appearance focus, target gender, and perceptions of warmth, morality and competence. Journal of Experimental Social Psychology, 47(3), 572–581. https://doi.org/10.1016/j.jesp.2010.12.020.

Kervyn, N., Fiske, S., & Yzerbyt, V. (2015). Forecasting the primary dimension of social perception: symbolic and realistic threats together predict warmth in the stereotype content model. Social Psychology, 46(1), 36–45. https://doi.org/10.1027/1864-9335/a000219.

Koch, A., Imhoff, R., Dotsch, R., Unkelbach, C., & Alves, H. (2016). The ABC of stereotypes about groups: Agency/socioeconomic success, conservative-progressive beliefs, and communion. Journal of Personality and Social Psychology, 110(5), 675–709. https://doi.org/10.1037/pspa0000046.

Kupferberg, A., Glasauer, S., Huber, M., Rickert, M., Knoll, A., & Brandt, T. (2011). Biological movement increases acceptance of humanoid robots as human partners in motor interaction. AI & SOCIETY, 26(4), 339–345. https://doi.org/10.1007/s00146-010-0314-2.

Leach, C. W., Ellemers, N., & Barreto, M. (2007). Group virtue: The importance of morality (vs. competence and sociability) in the positive evaluation of in-groups. Journal of Personality and Social Psychology, 93(2), 234–249. https://doi.org/10.1037/0022-3514.93.2.234.

MacDorman, K. F. (2019). Masahiro Mori und das unheimliche Tal: Eine Retrospektive. Zenodo. https://doi.org/10.5281/ZENODO.3226274.

Mandl, S., Bretschneider, M., Meyer, S., Gesmann-Nuissl, D., Asbrock, F., Meyer, B., & Strobel, A. (2022a). Embodied digital technologies: First insights in the social and legal perception of robots and users of prostheses. Frontiers in Robotics and AI, 9, 787970. https://doi.org/10.3389/frobt.2022.787970.

Mandl, S., Bretschneider, M., Asbrock, F., Meyer, B., & Strobel, A. (2022b). The Social Perception of Robots Scale (SPRS): Developing and Testing a Scale for Successful Interaction Between Humans and Robots. In L. M. Camarinha-Matos, A. Ortiz, X. Boucher, & A. L. Osório (Eds.), Collaborative Networks in Digitalization and Society 5.0. 23rd IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2022, Lisbon, Portugal, September 19–21, 2022 Proceedings (pp. 321–334). Springer. https://doi.org/10.1007/978-3-031-14844-6_26.

Meyer, B., & Asbrock, F. (2018). Disabled or cyborg? How bionics affect stereotypes toward people with physical disabilities. Frontiers in Psychology, 9, 2251. https://doi.org/10.3389/fpsyg.2018.02251.

Mieczkowski, H., Liu, S. X., Hancock, J., & Reeves, B. (2019). Helping not hurting: Applying the stereotype content model and BIAS map to social robotics. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 222–229). https://doi.org/10.1109/HRI.2019.8673307.

Moor, J. H. (2006). The nature, importance, and difficulty of machine ethics. IEEE Intelligent Systems, 21(4), 18–21. https://doi.org/10.1109/MIS.2006.80.

Mori, M., MacDorman, K., & Kageki, N. (2012). The uncanny valley [from the field]. IEEE Robotics & Automation Magazine, 19(2), 98–100. https://doi.org/10.1109/MRA.2012.2192811.

Naneva, S., Sarda Gou, M., Webb, T. L., & Prescott, T. J. (2020). A systematic review of attitudes, anxiety, acceptance, and trust towards social robots. International Journal of Social Robotics, 12, 1179–1201. https://doi.org/10.1007/s12369-020-00659-4.

Osgood, C., Suci, G., & Tannenbaum, P. (1957). The measurement of meaning. American Journal of Sociology, 63, 550–551. https://doi.org/10.1086/222316.

Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 22–27. https://doi.org/10.1016/j.jbef.2017.12.004.

von der Pütten, A. M., & Krämer, N. C. (2012). A survey on robot appearances. In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction—HRI ′12 (pp. 267–268). https://doi.org/10.1145/2157689.2157787.

Rosenthal-von der Pütten, A. M., Krämer, N. C., Becker-Asano, C., Ogawa, K., Nishio, S., & Ishiguro, H. (2014). The uncanny in the wild. Analysis of unscripted human-android interaction in the field. International Journal of Social Robotics, 6(1), 67–83. https://doi.org/10.1007/s12369-013-0198-7.

Sarda Gou, M., Webb, T. L., & Prescott, T. J. (2021). The effect of direct and extended contact on attitudes towards social robots. Heliyon, 7(3), e6418. https://doi.org/10.1016/j.heliyon.2021.e06418.

Sauppé, A., & Mutlu, B. (2015). The social impact of a robot co-worker in industrial settings. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems—CHI ′15 (pp. 3613–3622). https://doi.org/10.1145/2702123.2702181.

Savela, N., Turja, T., & Oksanen, A. (2018). Social acceptance of robots in different occupational fields: a systematic literature review. International Journal of Social Robotics, 10(4), 493–502. https://doi.org/10.1007/s12369-017-0452-5.

Savela, N., Oksanen, A., Pellert, M., & Garcia, D. (2021). Emotional reactions to robot colleagues in a role-playing experiment. International Journal of Information Management, 60, 102361. https://doi.org/10.1016/j.ijinfomgt.2021.102361.

Scheunemann, M. M., Cuijpers, R. H., & Salge, C. (2020). Warmth and competence to predict human preference of robot behavior in physical human-robot interaction. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1340–1347). https://doi.org/10.1109/RO-MAN47096.2020.9223478.

Seltman, J. H. (2009). Experimental design and statistics. http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf. Accessed August 2, 2022

Siedl, S. M., & Mara, M. (2021). Exoskeleton acceptance and its relationship to self-efficacy enhancement, perceived usefulness, and physical relief: A field study among logistics workers. Wearable Technologies, 2, e10. https://doi.org/10.1017/wtc.2021.10.

Simmons, J., Nelson, L., & Simonsohn, U. (2012). A 21 word solution. SPSP Dialogue. https://doi.org/10.2139/ssrn.2160588

Statistisches Bundesamt (2021). Statista. Retrieved September 15, 2021, from https://de.statista.com/statistik/daten/studie/445223/umfrage/produtkionsmenge-von-mehrzweck-industrierobotern-in-deutschland/

Turja, T., & Oksanen, A. (2019). Robot acceptance at work: a multilevel analysis based on 27 EU countries. International Journal of Social Robotics, 11(4), 679–689. https://doi.org/10.1007/s12369-019-00526-x.

de Visser, E. J., Monfort, S. S., McKendrick, R., Smith, M. A. B., McKnight, P. E., Krueger, F., & Parasuraman, R. (2016). Almost human: anthropomorphism increases trust resilience in cognitive agents. Journal of Experimental Psychology: Applied, 22(3), 331–349. https://doi.org/10.1037/xap0000092.

Vornholt, K., Uitdewilligen, S., & Nijhuis, F. J. N. (2013). Factors affecting the acceptance of people with disabilities at work: a literature review. Journal of Occupational Rehabilitation, 23(4), 463–475. https://doi.org/10.1007/s10926-013-9426-0.

Wang, S., Lilienfeld, S. O., & Rochat, P. (2015). The uncanny valley: Existence and explanations. Review of General Psychology, 19(4), 393–407. https://doi.org/10.1037/gpr0000056.

Wiese, E., Weis, P. P., Bigman, Y., Kapsaskis, K., & Gray, K. (2021). It’s a match: Task assignment in human-robot collaboration depends on mind perception. International Journal of Social Robotics. https://doi.org/10.1007/s12369-021-00771-z.