Social networks predict the life and death of honey bees
Tóm tắt
Từ khóa
Tài liệu tham khảo
Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
Gordon, D. M. Ant Encounters: Interaction Networks and Colony Behavior (Princeton Univ. Press, 2010).
Krause, J., James, R., Franks, D. W. & Croft, D. P. Animal Social Networks (Oxford Univ. Press, 2015).
Pinter-Wollman, N. et al. The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav. Ecol. 25, 242–255 (2014).
Psorakis, I., Roberts, S. J., Rezek, I. & Sheldon, B. C. Inferring social network structure in ecological systems from spatio-temporal data streams. J. R. Soc. Interface 9, 3055–3066 (2012).
Lusseau, D. & Newman, M. E. J. Identifying the role that animals play in their social networks. Proc. Biol. Sci. 271, S477–S481 (2004).
Cheney, D. L., Silk, J. B. & Seyfarth, R. M. Network connections, dyadic bonds and fitness in wild female baboons. R. Soc. Open Sci. 3, 160255 (2016).
Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).
Claidière, N., Messer, E. J. E., Hoppitt, W. & Whiten, A. Diffusion dynamics of socially learned foraging techniques in squirrel monkeys. Curr. Biol. 23, 1251–1255 (2013).
Flack, J. C., Girvan, M., de Waal, F. B. M. & Krakauer, D. C. Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006).
Mehra, A., Dixon, A. L., Brass, D. J. & Robertson, B. The Social Network Ties of Group Leaders: implications for group performance and leader reputation. Organ. Sci. 17, 64–79 (2006).
Sueur, C. & Petit, O. Organization of group members at departure is driven by social structure in Macaca. Int. J. Primatol. 29, 1085–1098 (2008).
Strandburg-Peshkin, A., Papageorgiou, D., Crofoot, M. C. & Farine, D. R. Inferring influence and leadership in moving animal groups. Philos. Trans. R. Soc. Ser. B 373, 20170006 (2018).
Planckaert, J., Nicolis, S. C., Deneubourg, J.-L., Sueur, C. & Bles, O. A spatiotemporal analysis of the food dissemination process and the trophallactic network in the ant Lasius niger. Sci. Rep. 9, 1–11 (2019).
Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. USA 112, 4690–4695 (2015).
Sendova-Franks, A. B. et al. Emergency networking: famine relief in ant colonies. Anim. Behav. 79, 473–485 (2010).
Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M. & Mainen, Z. F. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat. Neurosci. 17, 1455–1463 (2014).
Tofts, C. & Franks, N. R. Doing the right thing: ants, honeybees and naked mole-rats. Trends Ecol. Evol. 7, 346–349 (1992).
Traniello, J. F. & Rosengaus, R. B. Ecology, evolution and division of labour in social insects. Anim. Behav. 53, 209–213 (1997).
Pinter-Wollman, N. et al. Harvester ants use interactions to regulate forager activation and availability. Anim. Behav. 86, 197–207 (2013).
Pinter-Wollman, N., Wollman, R., Guetz, A., Holmes, S. & Gordon, D. M. The effect of individual variation on the structure and function of interaction networks in harvester ants. J. R. Soc. Interface 8, 1562–1573 (2011).
Seeley, T. D. The tremble dance of the honey bee: message and meanings. Behav. Ecol. Sociobiol. 31, 375–383 (1992).
Gordon, D. M. & Mehdiabadi, N. J. Encounter rate and task allocation in harvester ants. Behav. Ecol. Sociobiol. 45, 370–377 (1999).
Davidson, J. D. & Gordon, D. M. Spatial organization and interactions of harvester ants during foraging activity. J. R. Soc. Interface 14, 20170413 (2017).
Quevillon, L. E., Hanks, E. M., Bansal, S. & Hughes, D. P. Social, spatial, and temporal organization in a complex insect society. Sci. Rep. 5, 13393 (2015).
Baracchi, D. & Cini, A. A socio-spatial combined approach confirms a highly compartmentalised structure in honeybees. Ethology 120, 1167–1176 (2014).
Naug, D. Structure of the social network and its influence on transmission dynamics in a honeybee colony. Behav. Ecol. Sociobiol. 62, 1719–1725 (2008).
Schneider, S. S. & Lewis, L. A. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35, 117–131 (2004).
Huang, Z. Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158 (1996).
Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).
Gernat, T. et al. Automated monitoring of behavior reveals bursty interaction patterns and rapid spreading dynamics in honeybee social networks. Proc. Natl Acad. Sci. USA 115, 1433–1438 (2018).
Amdam, G. V. & Omholt, S. W. The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J. Theor. Biol. 223, 451–464 (2003).
Ihle, K. E., Page, R. E., Frederick, K., Fondrk, M. K. & Amdam, G. V. Genotype effect on regulation of behaviour by vitellogenin supports reproductive origin of honeybee foraging bias. Anim. Behav. 79, 1001–1006 (2010).
Pankiw, T. & Page Jr., R. E. The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J. Comp. Physiol. A 185, 207–213 (1999).
Scheiner, R. Birth weight and sucrose responsiveness predict cognitive skills of honeybee foragers. Anim. Behav. 84, 305–308 (2012).
Wang, Y. et al. Regulation of behaviorally associated gene networks in worker honey bee ovaries. J. Exp. Biol. 215, 124–134 (2012).
Wang, Y., Kaftanoglu, O., Siegel, A. J., Page, R. E. & Amdam, G. V. Surgically increased ovarian mass in the honey bee confirms link between reproductive physiology and worker behavior. J. Insect Physiol. 56, 1816–1824 (2010).
Münch, D., Amdam, G. V. & Wolschin, F. Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee. Funct. Ecol. 22, 407–421 (2008).
Dreller, C., Jr., R. E. P. & Fondrk, M. K. Regulation of pollen foraging in honeybee colonies: effects of young brood, stored pollen, and empty space. Behav. Ecol. Sociobiol. 45, 227–233 (1999).
Seeley, T. D. Social foraging in honey bees: How nectar foragers assess their colony’s nutritional status. Behav. Ecol. Sociobiol. 24, 181–199 (1989).
Traynor, K. S., Le Conte, Y. & Page, R. E. Age matters: pheromone profiles of larvae differentially influence foraging behaviour in the honeybee, Apis mellifera. Anim. Behav. 99, 1–8 (2015).
Ament, S. A., Wang, Y. & Robinson, G. E. Nutritional regulation of division of labor in honey bees: toward a systems biology perspective. WIREs Syst. Biol. Med. 2, 566–576 (2010).
Huang, Z. Y. & Robinson, G. E. Seasonal changes in juvenile hormone titers and rates of biosynthesis in honey bees. J. Comp. Physiol. B 165, 18–28 (1995).
Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208, 4641–4649 (2005).
Wang, Y., Kaftanoglu, O., Brent, C. S., Page, R. E. & Amdam, G. V. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.). J. Exp. Biol. 219, 949–959 (2016).
Blut, C. et al. Automated computer-based detection of encounter behaviours in groups of honeybees. Sci. Rep. 7, 17663 (2017).
Mersch, D. P., Crespi, A. & Keller, L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340, 1090–1093 (2013).
Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1201 (2018).
Seeley, T. D.The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies (Harvard Univ. Press, 1995).
Hasenjager, M. J., Hoppitt, W. & Leadbeater, E. Network-based diffusion analysis reveals context-specific dominance of dance communication in foraging honeybees. Nat. Commun. 11, 1–9 (2020).
Bozek, K., Hebert, L., Portugal, Y. & Stephens, G. J. Markerless tracking of an entire insect colony. Preprint at bioRxiv https://doi.org/10.1101/2020.03.26.007302v1 (2020).
Siegel, A. J., Fondrk, M. K., Amdam, G. V. & Page, R. E. In-hive patterns of temporal polyethism in strains of honey bees (Apis mellifera) with distinct genetic backgrounds. Behav. Ecol. Sociobiol. 67, 1623–1632 (2013).
Johnson, B. R. Division of labor in honeybees: form, function, and proximate mechanisms. Behav. Ecol. Sociobiol. 64, 305–316 (2010).
Farina, W. M. The interplay between dancing and trophallactic behavior in the honey bee Apis mellifera. J. Comp. Physiol. A 186, 239–245 (2000).
Girard, M. B., Mattila, H. R. & Seeley, T. D. Recruitment-dance signals draw larger audiences when honey bee colonies have multiple patrilines. Insectes Soc. 58, 77–86 (2011).
Cholé, H. et al. Social contact acts as appetitive reinforcement and supports associative learning in honeybees. Curr. Biol. 29, 1407–1413.e3 (2019).
von Frisch, K.The Dance Language and Orientation of Bees (Harvard Univ. Press, 1967).
Nieh, J. C. A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr. Biol. 20, 310–315 (2010).
Seeley, T. D. et al. Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335, 108 (2012).
Balbuena, M. S., Molinas, J. & Farina, W. M. Honeybee recruitment to scented food sources: correlations between in-hive social interactions and foraging decisions. Behav. Ecol. Sociobiol. 66, 445–452 (2012).
Goyret, J. & Farina, W. M. Descriptive study of antennation during trophallactic unloading contacts in honeybees Apis mellifera carnica. Insectes Soc. 50, 274–276 (2003).
Boenisch, F. et al. Tracking all members of a honey bee colony over their lifetime using learned models of correspondence. Front. Robot. AI 5, 35 (2018).
Wario, F., Wild, B., Couvillon, M. J., Rojas, R. & Landgraf, T. Automatic methods for long-term tracking and the detection and decoding of communication dances in honeybees. Front. Ecol. Evol. 3, https://doi.org/10.3389/fevo.2015.00103 (2015).
Smith, M. L., Ostwald, M. M. & Seeley, T. D. Honey bee sociometry: tracking honey bee colonies and their nest contents from colony founding until death. Insectes Soc. 63, 553–563 (2016).
Belkin, M. & Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003).
Knapp, T. R. Canonical correlation analysis: a general parametric significance-testing system. Psychol. Bull. 85, 410–416 (1978).
McFadden, D. in Frontiers in Econometrics (ed. Zarembka, P.), 105–142 (Academic Press, 1973).
Levene, H. in Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, 278–292 (Stanford Univ. Press, 1960).
Robinson, G. E. & Ratnieks, F. L. Induction of premature honey bee (Hymenoptera: Apidae) flight by juvenile hormone analogs administered orally or topically. J. Econ. Entomol. 80, 784–787 (1987).
Amdam, G. V., Norberg, K., Fondrk, M. K. & Page, R. E. Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc. Natl Acad. Sci. USA 101, 11350–11355 (2004).
Scheiner, R., Page, R. E. & Erber, J. Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie 35, 133–142 (2004).
Amdam, G. V. & Page Jr, R. E. The developmental genetics and physiology of honeybee societies. Anim. Behav. 79, 973–980 (2010).
Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl Acad. Sci. USA 112, 3427–3432 (2015).
Rueppell, O., Linford, R., Gardner, P., Coleman, J. & Fine, K. Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L). Behav. Ecol. Sociobiol. 62, 1621 (2008).
Richardson, T. et al. Ant behavioral maturation is mediated by a stochastic transition between two fundamental states. Curr. Biol. (in the press).
Smith, M. L. The honey bee parasite Nosema ceranae: transmissible via food exchange? PLoS ONE 7, e43319 (2012).
Lecocq, A., Jensen, A. B., Kryger, P. & Nieh, J. C. Parasite infection accelerates age polyethism in young honey bees. Sci. Rep. 6, 22042 (2016).
Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl Acad. Sci. USA 17, 10406–10413 (2020).
Wild, B., Sixt, L. & Landgraf, T. Automatic localization and decoding of honeybee markers using deep convolutional neural networks. Preprint at arXiv http://arxiv.org/abs/1802.04557 (2018).
Otsu, N. A threshold selection method from Gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9, 62–66 (1979).
Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).
Wario, F., Wild, B., Rojas, R. & Landgraf, T. Automatic detection and decoding of honey bee waggle dances. PLoS ONE 12, e0188626 (2017).
Abdi, H. in Encyclopedia of Measurement and Statistics, 908–912 (Sage, 2007).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Paszke, A. et al. in Advances in Neural Information Processing Systems, 8026–8037 (NIPS, 2019).
Ward, J. H. J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
Collaboration, T. A. et al. The Astropy Project: building an inclusive, open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Wild, B., Dormagen, D. M. & Landgraf, T. Social networks predict the life and death of honey bees—data. https://doi.org/10.5281/zenodo.4438013 (2021).