Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Động lực học hạt nhẵn cho phân tích lưu lượng máu: phát triển thuật toán vòng đời hạt
Tóm tắt
Mục tiêu của nghiên cứu này là tạo điều kiện cho việc ứng dụng phương pháp động lực học hạt nhẵn (SPH) vào phân tích động lực học chất lỏng trong dòng chảy hỗn loạn qua các mạch máu có hình dạng phức tạp, và so sánh nó với phương pháp phần tử hữu hạn (FEM) tiên tiến nhất hiện nay. SPH cung cấp khả năng quan sát chuyển động của mảnh chất lỏng hoặc sự bao gồm hạt trong khung vật liệu Lagrangian, mang lại cho các nhà nghiên cứu cái nhìn sâu hơn về tương tác Chất lỏng - Cấu trúc, chẳng hạn như vận chuyển và phân phối hạt y tế, hoặc sự tích tụ mảng bám trong xơ vữa động mạch. Để tạo ra dòng chảy chất lỏng trong SPH, các hạt được tạo ra tại đầu vào và phá hủy tại đầu ra. Trong bài báo này, chúng tôi trình bày một thuật toán vòng đời hạt mới cho việc tạo ra và phá hủy các hạt bằng cách sử dụng các loại hạt, linh hoạt và phù hợp hơn với các mô hình hình dạng phức tạp so với các giải pháp thương mại tiên tiến hiện tại, mà sử dụng các mặt phẳng biên. Thuật toán của chúng tôi có các loại hạt mẹ và hạt mới sinh được đặt tại các đầu vào dùng để tạo ra dòng chảy hạt, và tại các đầu ra, chúng tôi có các loại hạt chết và hạt tiêu diệt, được sử dụng để xóa bỏ các hạt. Dựa trên các hàng xóm hiện tại, loại hạt được cập nhật trong phương pháp tìm kiếm hàng xóm gần nhất, được gọi trong mỗi bước thời gian. Các khả năng của thuật toán mới được minh họa bằng một ví dụ chuẩn và một hình dạng bệnh nhân cụ thể thực tế, cho thấy kết quả tương tự, nhưng các lợi thế của SPH về theo dõi hạt vẫn chưa được tận dụng trong công việc tương lai của chúng tôi.
Từ khóa
#động lực học hạt nhẵn #phương pháp phần tử hữu hạn #lưu lượng máu #tương tác Chất lỏng - Cấu trúc #hình dạng phức tạpTài liệu tham khảo
Gingold RA, Monaghan JJ (1997) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Notices Royal Astron Soc 181:375–389
Lucy LB (1997) A numerical approach to the testing of fusion process. Astron J 88:1013–1024
Monaghan JJ, Pongracic H (1985) Artificial viscosity for particle methods. Appl Numer Math 1(3):187–194
Libersky LD, Petschek AG (2005) Smooth particle hydrodynamics with strength of materials. Lecture notes in physics. Springer, Berlin, pp 248–257
Xiao Y, Wu H, Ping X (2020) On the simulation of fragmentation during the process of ceramic tile impacted by blunt projectile with SPH method in LS-DYNA. Comput Model Eng Sci 122(3):923–954
Grimaldia A, Solloa A, Guidab M, Marulo F (2013) Parametric study of a SPH high velocity impact analysis—a birdstrike windshield application. Compos Struct 96:616–630
Parshikova AN, Medina SA, Loukashenkob II, Milekhin VA (2000) Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities. Int J Impact Eng 24(8):779–796
Groenenboom PH, Campbell J, Benítez Montañés L, Siemann M H (2014) Innovative SPH methods for aircraft ditching. In: Proc of 11th WCCM/5th ECCM, Barcelona, Spain
Patel HM, Campbell VR (2009) An SPH technique for evaluating the behaviour of ships in extreme oceean waves. Int J Marit Eng 151:39–47
Kawamura K, Hashimoto H, Matsuda A, Terada D (2016) SPH simulation of ship behaviour in severe water-shipping situations. Ocean Eng 120:220–229
Lin J, Naceur H, Coutellier D, Laksimi A (2014) Efficient meshless SPH method for the numerical modeling of thick shell structures undergoing large deformations. Int J Nonlin Mech 65:1–13
De Vuyst T, Vignjevic R, Campbell J (2005) Coupling between meshless and finite element methods. Int J Impact Eng 31:1054–1064
Bathe KJ (2007). Finite element procedures. Klaus-Jurgen Bathe
Tran V-X, Samuel Geniaut S (2012) Development and industrial applications of X-FEM axisymmetric model for fracture mechanics. Eng Fract Mech 82:135–157
Uomoto T, Satoh K, Okada H, Yusa Y (2017) Mesh-independent data point finite element method (MDP-FEM) for large deformation elastic-plastic problems—an application to the problems of diffused necking. Finite Elem Anal Des 136:18–36
Gui-Rong L (2002) Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton
Kojic M, Filipovic N, Stojanovic B, Kojic N (2009) Computer modeling in bioengineering: theoretical background, examples and software. John Wiley & Sons, Hoboken
Shahriari S, Kadem L, Rogers BD, Hassan I (2012) Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity. Int J Numer Meth Biomed Eng 28(11):1121–1143
Shahriari S, Maleki H, Hassan I, Kadem L (2012) Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics. J Biomech 45(15):2637–2644
Caballero A, Mao W, Liang L, Oshinski J, Primiano C, McKay R, Kodali S, Sun W (2017) Modeling left ventricular blood flow using smoothed particle hydrodynamics. Cardiovasc Eng Technol 8(4):465–479
Lluch È, De Craene M, Bijnens B, Sermesant M, Noailly J, Camara O, Morales HG (2019) Breaking the state of the heart: meshless model for cardiac mechanics. Biomech Model Mechanobiol 18(6):1549–1561
Zhang C, Wang J, Rezavand M, Wu D, Hu X (2021) An integrative smoothed particle hydrodynamics method for modeling cardiac function. Comput Methods Appl Mech Eng 381:113847
Ye T, Phan-Thien N, Lim CT (2016) Particle-based simulations of red blood cells—a review. J Biomech 49(11):2255–2266
Polwaththe-Gallage H-N, Saha SC, Flower SE, Senadeera W, Gu Y (2016) SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. Biomed Eng Online 15(2):161
Soleimani M, Sahraee S, Wriggers P (2019) Red blood cell simulation using a coupled shell–fluid analysis purely based on the SPH method. Biomech Model Mechanobiol 18:347–359
Karimi A, Razaghi R (2018) Interaction of the blood components and plaque in a stenotic coronary artery. Artery Res 24:47–61
Qin Y, Wu J, Hu Q, Ghista DN, Wong KK (2017) Computational evaluation of smoothed particle hydrodynamics for implementing blood flow modelling through CT reconstructed arteries. J Xray Sci Technol 25(2):213–232
Al-Saad M, Suarez CA, Obeidat A, Bordas PS, Kulasegaram S (2020) Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation. Comput Model Eng Sci 122(3):831–862
Wang F, Xu S, Jiang D, Zhao B, Dong X, Zhou T, Luo X (2021) Particle hydrodynamic simulation of thrombus formation using velocity decay factor. Comput Methods Programs Biomed 207:106173
De Carvalho ASVJ, Bíscaro HH (2019) Blood flow SPH simulation with elastic deformation of blood vessels. In: Proceedings of IEEE 19th international conference on bioinformatics and bioengineering (BIBE), pp. 532–538
Liu M, Zhang Z (2019) Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci China Phys Mech Astron 62:984701
Lind SJ, Rogers BD, Stansby PK (2020) Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proc Royal Soc A 476(2241):20190801
Mao W, Li K, Sun W (2016) Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol 7(4):374–388
Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int J Numer Meth Engng 72:295–324
Vacondio R, Rogers BD, Stansby PK, Mignosa P, Feldman J (2013) Variable resolution for SPH: a dynamic particle coalescing and splitting scheme. Comput Methods Appl Mech Eng 256:132–148
Vacondio R, Altomare C, De Leffe M, Hu X, Le Touzé D, Lind S, Marongiu J-C, Marrone S, Rogers BD, Souto-Iglesias A (2021) Grand challenges for smoothed particle hydrodynamics numerical schemes. Comp Part Mech 8:575–588
Liu GR, Liu MB (2003) Smoothed particle hydrodyndmics a meshfree particle method. World Scientific Publishing, Singapore
Holzapfel G (2001) Nonlinear solid mechanics. A continuum approach for engineering. John Wiley & Sons, Hoboken
Fourtakas G, Stansby PK, Rogers BD, Lind SJ (2008) An Eulerian-Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface. Comput Methods Appl Mech Eng 329:532–552
Djukic T, Saveljic I, Filipovic N (2019) Numerical modeling of the motion of otoconia particles in the patient-specific semicircular canal. Comp Part Mech 6:767–780
Lind S, Stansby PK (2016) High-Order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion. J Comput Phys 326:290–311
Campbell JC, Vignjevic R (2012) Simulating structural response to water impact. Int J Impact Eng 49(1):10
Liu MB, Liu GR, Lam KY (2006) Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength. Shock Waves 15:21–29
Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Computat Methods Eng 17:25–76
Nikolic A (2018) Numerical analysis of laminar and turbulent flow in real models of arterial bifurcations with stenosis. Ph.D. dissertation, Faculty of Engineering, University of Kragujevac, Serbia
Lo EYM, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24(5):275–286
Liu X, Lin P, Shao S (2014) An ISPH simulation of coupled structure interaction with free surface flows. J Fluid Struct 48:46–61
Fragassa C, Topalovic M, Pavlovic A, Vulovic S (2019) Dealing with the effect of air in fluid structure interaction by coupled SPH-FEM methods. Materials 12(7):1162
McDonough JM (2007) Introductory lectures on turbulence, physics, mathematics and modeling, Departments of Mechanical Engineering and Mathematics, University of Kentucky, USA
Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310
Wilcox DC (2006) Turbulence modeling for CFD, 3rd edn. DCW Industries, La Canada, CA
Bassi F, Crivellini A, Rebay S, Savini M (2005) Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k–ω turbulence model equations. Comput Fluids 34(4–5):507–540
Bassi F, Ghidoni A, Perbellini A, Rebay S, Crivellini A, Franchina N, Savini M (2014) A high-order Discontinuous Galerkin solver for the incompressible RANS and k–ω turbulence model equations. Comput Fluids 98:54–68
Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226
Liang C, Huang J, Shi W (2014) A new treatment for boundary of laminar flow inlet or outlet in SPH. J Softw Eng 8:321–327
Jonsson P, Andreasson P, Gunnar J, Hellström I, Jonsén P, Lundström TS (2016) Smoothed Particle Hydrodynamic simulation of hydraulic jump using periodic open boundaries. Appl Math Model 40(19–20):8391–8405
Hou Q, Zhang LX, Tijsseling AS, Kruisbrink ACH (2012) Rapid filling of pipelines with the SPH particle method. Procedia Eng 31:38–43
Jonsson P, Jonsén P, Andreasson P, Hellström J G I, Lundström T S (2011) Smoothed particle hydrodynamics modeling of hydraulic jumps. In: Proceedings of particle-based methods II—fundamentals and applications, Barcelona, 26–28 October, 490–501
Hamid MS (2018) Numerical simulation transcatheter aortic valve implantation and mechanics of valve function. In: Proceedings of 15th international LS-DYNA® conference and users meeting, Dearborn, Michigan, USA June 10–14, pp. 1–8
Hallquist J O (2006) LS-DYNA Theory Manual. Livermore Software Technology Corporation
LSTC (2010) LS-DYNA Keyword User´s Manual Version 971 Rev 5. Livermore: Livermore Software Technology Corporation (LSTC)
Lastiwka M, Basa M, Quinlan NJ (2009) Permeable and non-reflecting boundary conditions in SPH. Int J Numer Methods Fluids 61(7):709–724
Domínguez JM, Fourtakas G, Altomare C, Canelas RB, Tafuni A, García-Feal O, Martínez-Estévez I, Mokos A, Vacondio R, Crespo A J C, Rogers BD, Stansby PK, Gómez-Gesteira M (2021) DualSPHysics: from fluid dynamics to multiphysics problems. Comput Part Mech
Vacondio RBSPMP, Rogers BD, Stansby PK, Mignosa P (2012) SPH modeling of shallow flow with open boundaries for practical flood simulation. J Hydraul Eng 138(6):530–541
Hosseini SM, Feng JJ (2011) Pressure boundary conditions for computing incompressible flows with SPH. J Comput Phys 230(19):7473–7487
Vignjevic R, De Vuyst T, Campbell J, (2002) The Use of a Homogeneous Repulsive Force for Contact Treatment in SPH. Proceedings of Fifth World Congress on Computational Mechanics WCCM V, Vienna, Austria, July 7–12
Vignjevic R, Campbell J (2009) Review of development of the smooth particle hydrodynamics (SPH) method. In: Hiermaier S (ed) Predictive modeling of dynamic processes. Springer, Boston
Federico I, Marrone S, Colagrossi A, Aristodemo F, Antuono M (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech B Fluids 34:35–46
Cao WJ, Yang DZ, Lu XW, He Y, Zhou ZY (2013) Numerical simulation of flow and heat transfer during filling process based on SPH method. Adv Mater Res 658:276–280
Jinlian R, Jie O, Binxin Y, Tao J, Hongyan M (2011) Simulation of container filling process with two inlets by improved smoothed particle hydrodynamics (SPH) method. Int J Comut Fluid Dyn 25(7):365–386
Holmes DW, Pivonka P (2021) Novel pressure inlet and outlet boundary conditions for Smoothed Particle Hydrodynamics, applied to real problems in porous media flow. J Comput Phys 429:110029
DualSPHysics team http://dual.sphysics.org. XML GUIDE FOR DUALSPHYSICS
DualSPHysics team http://dual.sphysics.org. XML GUIDE FOR DUALSPHYSICS OPEN BOUNDARY CONDITIONS SPECIAL: INLET/OUTLET
Fraga FCAD, Schuina LL, Porto BS (2020) An investigation into neighbouring search techniques in meshfree particle methods: an evaluation of the neighbour lists and the direct search. Arch Computat Methods Eng 27:1093–1107
Winkler D, Rezavand M, Rauch W (2018) Neighbour lists for smoothed particle hydrodynamics on GPUs. Comput Phys Commun 225:140–148
Filipovic N, Milasinovic D, Jagic N, Miloradovic V, Hetterich H, Rieber J (2011) Numerical simulation of the flow field and mass transport pattern within the coronary artery. Comput Methods Biomech Biomed Engin 14(4):379–388
Filipovic N, Ivanovic M, Kojic M (2009) A comparative numerical study between dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple unsteady flows in microfluidics. Microfluid Nanofluid 7:227–235
Jovic S, Driver DM (1994) Backward-facing step measurements at low Reynolds number, Re (sub h) = 5000. Tech rep NASA
Creech A, Jackson A, Maddison J, Percival J, Bruce T (2016) Efficient large eddy simulation for the discontinuous galerkin method. arXiv: Fluid Dynamics
Blagojevic M, Nikolic A, Zivkovic M, Zivkovic M, Stankovic G (2014) A novel framework for fluid/structure interaction in rapid subject-specific simulations of blood flow in coronary artery bifurcation. Vojnosanit Pregl 71(3):285–292
Topalovic M, Blagojevic M, Nikolic A, Zivkovic M, Filipovic N (2015) Application of smoothed particle hydrodynamics in biomechanics: Advanced procedure for discretization of complex biological shapes into pseudo-particles. In: Proceedings of IEEE 15th international conference on bioinformatics and bioengineering (BIBE), Belgrade, Serbia, November 2–4, pp. 1–4
Müller M, Schirm S, Teschner M (2004) Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol Health Care 12(1):25–31
Hieber SE, Walther JH, Koumoutsakos P (2004) Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. Technol Health Care 12(4):305–314
Tanaka N, Hayakawa Y, Masuzawa T (2006) Three-dimensional simulations of microscopic blood flow using SPH method. J Biomech 39(S1):S430
Shahriari S, Kadem L (2018) Smoothed particle hydrodynamics method and its applications to cardiovascular flow modeling. Numerical methods and advanced simulation in biomechanics and biological processes. Academic Press, Cambridge, pp 203–219
Ponzini R, Vergara C, Rizzo G, Veneziani A, Roghi A, Vanzulli A, Parodi O, Redaelli A (2010) Womersley number-based estimates of blood flow rate in doppler analysis: in vivo validation by means of phase-contrast MRI. IEEE Trans Biomed Eng 57(7):1807–1815
Egorova M, Dyachkov S, Parshikov A, Zhakhovsky A (2019) Parallel SPH modeling using dynamic domain decomposition and load balancing displacement of Voronoi subdomains. Comput Phys Commun 234:112–125
Violeau D, Leroy A (2014) On the maximum time step in weakly compressible SPH. J Comput Phys 256:388–415
Moyle KR, Antiga L, Steinman DA (2006) Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J Biomech Eng 128(3):371–379