Smartphone apps for calculating insulin dose: a systematic assessment
Tóm tắt
Medical apps are widely available, increasingly used by patients and clinicians, and are being actively promoted for use in routine care. However, there is little systematic evidence exploring possible risks associated with apps intended for patient use. Because self-medication errors are a recognized source of avoidable harm, apps that affect medication use, such as dose calculators, deserve particular scrutiny. We explored the accuracy and clinical suitability of apps for calculating medication doses, focusing on insulin calculators for patients with diabetes as a representative use for a prevalent long-term condition. We performed a systematic assessment of all English-language rapid/short-acting insulin dose calculators available for iOS and Android. Searches identified 46 calculators that performed simple mathematical operations using planned carbohydrate intake and measured blood glucose. While 59% (n = 27/46) of apps included a clinical disclaimer, only 30% (n = 14/46) documented the calculation formula. 91% (n = 42/46) lacked numeric input validation, 59% (n = 27/46) allowed calculation when one or more values were missing, 48% (n = 22/46) used ambiguous terminology, 9% (n = 4/46) did not use adequate numeric precision and 4% (n = 2/46) did not store parameters faithfully. 67% (n = 31/46) of apps carried a risk of inappropriate output dose recommendation that either violated basic clinical assumptions (48%, n = 22/46) or did not match a stated formula (14%, n = 3/21) or correctly update in response to changing user inputs (37%, n = 17/46). Only one app, for iOS, was issue-free according to our criteria. No significant differences were observed in issue prevalence by payment model or platform. The majority of insulin dose calculator apps provide no protection against, and may actively contribute to, incorrect or inappropriate dose recommendations that put current users at risk of both catastrophic overdose and more subtle harms resulting from suboptimal glucose control. Healthcare professionals should exercise substantial caution in recommending unregulated dose calculators to patients and address app safety as part of self-management education. The prevalence of errors attributable to incorrect interpretation of medical principles underlines the importance of clinical input during app design. Systemic issues affecting the safety and suitability of higher-risk apps may require coordinated surveillance and action at national and international levels involving regulators, health agencies and app stores.
Tài liệu tham khảo
Pew Research Internet Project: mobile technology fact sheet. http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/.
eMarketer: Smartphone users worldwide will total 1.75 billion in 2014. http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536.
Seabrook H, Stromer J, Shevkenek C, Bharwani A, de Grood J, Ghali W. Medical applications: a database and characterization of apps in Apple iOS and Android platforms. BMC Res Notes. 2014;7:573.
Comstock J. Survey: 32 percent of mobile device owners use fitness apps. 2014. http://mobihealthnews.com/29358/survey-32-percent-of-mobile-device-owners-use-fitness-apps/.
Digitas Health. mBook 2013 Edition - Marketing Mobile Health. 2013. http://m.2013.digitashealth.com/Mbook2013_web.pdf.
Manhattan Research. Taking the Pulse U.S. 2014 Environment. http://manhattanresearch.com/Products-and-Services/Physician/Taking-the-Pulse-U-S.
Commission E. Green paper on mobile health (“mHealth”). Brussels: European Commission; 2014.
Cortez NG, Cohen IG, Kesselheim AS. FDA regulation of mobile health technologies. N Engl J Med. 2014;371:372–9.
Yang YT, Silverman RD. Mobile health applications: the patchwork of legal and liability issues suggests strategies to improve oversight. Health Aff (Millwood). 2014;33:222–7.
England NHS. Five year forward view. UK: HM Government; 2014.
McCartney M. How do we know whether medical apps work? BMJ. 2013;346:f1811.
Buijink AWG, Visser BJ, Marshall L. Medical apps for smartphones: lack of evidence undermines quality and safety. Evid Based Med. 2013;18:90–2.
Sharpe R. Lacking regulation, many medical apps questionable at best. New England Center for Investigative Reporting. 2012. http://necir.org/2012/11/18/medical-apps/.
Chomutare T, Fernandez-Luque L, Årsand E, Hartvigsen G. Features of mobile diabetes applications: review of the literature and analysis of current applications compared against evidence-based guidelines. J Med Internet Res. 2011;13:e65.
Breton ER, Fuemmeler BF, Abroms LC. Weight loss - there is an app for that! But does it adhere to evidence-informed practices? Behav Med Pract Policy Res. 2011;1:523–9.
Abroms LC, Lee Westmaas J, Bontemps-Jones J, Ramani R, Mellerson J. A content analysis of popular smartphone apps for smoking cessation. Am J Prev Med. 2013;45:732–6.
Rosser BA, Eccleston C. Smartphone applications for pain management. J Telemed Telecare. 2011;17:308–12.
Wolf JA, Moreau JF, Akilov O, Patton T, English 3rd JC, Ho J, et al. Diagnostic inaccuracy of smartphone applications for melanoma detection. JAMA Dermatol. 2013;149:422–6.
Huckvale K, Car M, Morrison C, Car J. Apps for asthma self-management: a systematic assessment of content and tools. BMC Med. 2012;10:144.
Schachter M. The epidemiology of medication errors: how many, how serious? Br J Clin Pharmacol. 2009;67:621–3.
Gandhi TK, Weingart SN, Borus J, Seger AC, Peterson J, Burdick E, et al. Adverse drug events in ambulatory care. N Engl J Med. 2003;348:1556–64.
Gurwitz JH, Field TS, Harrold LR, Rothschild J, Debellis K, Seger AC, et al. Incidence and preventability of adverse drug events among older persons in the ambulatory setting. JAMA. 2003;289:1107–16.
Lamont T, Cousins D, Hillson R, Bischler A, Terblanche M. Safer administration of insulin: summary of a safety report from the National Patient Safety Agency. UK: National Patient Safety Agency; 2010.
Sears K, Scobie A, MacKinnon NJ. Patient-related risk factors for self-reported medication errors in hospital and community settings in 8 countries. Can Pharm J (Ott). 2012;145:88–93.
Limited P. Pfizer rheumatology calculator. iPhone /Android application - important information. 2011.
Bierbrier R, Lo V, Wu RC. Evaluation of the accuracy of smartphone medical calculation apps. J Med Internet Res. 2014;16:e32.
American Diabetes Association. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2008;31:S61–78.
Medicines and Healthcare Regulatory Agency. Guidance on medical device stand-alone software (including apps). http://www.mhra.gov.uk/Howweregulate/Devices/Software/index.htm.
Rees C. Recommendations for insulin dose calculator risk management. J Diabetes Sci Technol. 2014;8:142–9.
Fisher S. DAFNE Online [Medical App] 1.6.2. http://itunes.apple.com/gb/app/dafne-online/id387219270.
DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ. 2002;325:746.
MedicalExcellence. iCare-D [Medical App] 1.0.3. http://www.ta9s.com/apk/tw.project.diabetes.html.
Belchi FJ. Glucose Meter [Medical App] 1.6.3. http://play.google.com/store/apps/details?id=com.fjbelchi.glucosemeter2.
The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.
Shashaj B, Busetto E, Sulli N. Benefits of a bolus calculator in pre- and postprandial glycaemic control and meal flexibility of paediatric patients using continuous subcutaneous insulin infusion (CSII). Diabet Med. 2008;25:1036–42.
Gross TM, Kayne D, King A, Rother C, Juth S. A bolus calculator is an effective means of controlling postprandial glycemia in patients on insulin pump therapy. Diabetes Technol Ther. 2003;5:365–9.
Spiller HA, Borys DJ, Ryan ML, Sawyer TS, Wilson BL. Unintentional therapeutic errors involving insulin in the ambulatory setting reported to poison centers. Ann Pharmacother. 2011;45:17–22.
Beuhler MC, Spiller HA, Aleguas A. Demographics and outcome of unintentional insulin overdoses managed by three poison centers. Clin Toxicol (Phila). 2013;51:789–93.
Claydon-Platt K, Manias E, Dunning T. Medication-related problems occurring in people with diabetes during an admission to an adult teaching hospital: a retrospective cohort study. Diabetes Res Clin Pract. 2012;97:223–30.
Reason J. Human error: models and management. BMJ. 2000;320:768–70.
Bailey SC, Brega AG, Crutchfield TM, Elasy T, Herr H, Kaphingst K, et al. Update on health literacy and diabetes. Diabetes Educ. 2014;40:581–604.
Eysenbach G, Powell J, Kuss O, Sa ER. Empirical studies assessing the quality of health information for consumers on the world wide web: a systematic review. JAMA. 2002;287:2691–700.
Albrecht UV, von Jan U, Jungnickel T, Pramann O. App-synopsis - standard reporting for medical apps. Stud Health Technol Inform. 2013;192:1154.
Lewis TL. A systematic self-certification model for mobile medical apps. J Med Internet Res. 2013;15:e89.
BinDhim NF, Hawkey A, Trevena L. A systematic review of quality assessment methods for smartphone health apps. Telemed J E Health. 2014;21:97–104.
Singh I. Introducing the health apps library. 2013. http://www.england.nhs.uk/2013/03/13/health-apps-blog/.
Agencia de Calidad Sanitaria de Andalucia. Distintivo AppSaludable. http://www.calidadappsalud.com/.
U.S. Food and Drug Administration. Mobile medical applications - guidance for industry and food and drug administration staff. Rockville, MD, USA: U.S: Department of Health and Human Services; 2013.
Eng DS, Lee JM. The promise and peril of mobile health applications for diabetes and endocrinology. Pediatr Diabetes. 2013;14:231–8.
Charani E, Castro-Sanchez E, Moore L, Holmes A. Do smartphone applications in healthcare require a governance and legal framework? It depends on the application! BMC Med. 2014;12:29.
The preventing regulatory overreach to enhance care technology (PROTECT) act. In., 2nd Session edn; 2014.
Pym H. NHS plans ‘kitemark’ for health apps. 2014. http://www.bbc.co.uk/news/health-30027504.
NHS Choices. Health apps library – safe and trusted apps to help you manage your health. http://apps.nhs.uk/.
Dolan B. Happtique suspends mobile health app certification program. 2013. http://mobihealthnews.com/28165/happtique-suspends-mobile-health-app-certification-program/.
Hill J, Powell P. The national healthcare crisis: is eHealth a key solution? Bus Horiz. 2009;52:265–77.
Apple Support. Blood glucose measurements and the health app. http://support.apple.com/en-us/HT6533.