Smart energy systems for smart city districts: case study Reininghaus District
Tóm tắt
Dense settlement structures in cities have high demands of energy. Usually, these demands exceed the local resource availability. Individually developed supply options to cover these demands differ from place to place and can also vary within the boundaries of a city. In a common sense of European governance, cities are pushed to save energy, increase renewables and reduce import dependency on fossil fuels. There are many innovative concepts and technologies available to tackle these needs. The paper provides a comprehensive methodology for planning and assessing the development of ‘smart’ energy systems leading to complex energy provision technology networks using different on-site as well as off-site resources. The use of the P-graph (process-graph) method allows the optimisation of energy systems by using different energy sources for heating, storing and cooling. This paper discusses this method in the development of an urban brown field, the premises of the Reininghaus District, a former brewery in the city of Graz in Austria. The case study is interesting as it combines on-site energy sources (e.g. solar heat and photovoltaic) with nearby industrial waste heat and cooling at different temperatures and grid-based resources such as existing district heating, natural gas, and electricity. The case study also includes the competition between centralised technologies (e.g. large scale combined heat and power and heat pumps with district heating grids) and decentralised technologies (e.g. small scale combined heat and power, single building gas boilers, solar collectors, etc. in buildings). Ecological assessment with the Energetic Long-Term Analysis of Settlement Structures (ELAS) calculator provides an evaluation of the ecological impact of the developed energy systems. Different scenarios based on two building standards OIB (low energy house standard) and NZE (passive house standard) as well as different prices for key energy resources were developed for an urban development concept for the Reininghaus District. The results of these scenarios show a very wide spectrum of structures of the energy system with strong variations often caused by small changes in cost or prices. The optimisation shows that small changes in the setup of the price/cost structure can cause dramatic differences in the optimal energy system to supply a smart city district. However, decentralised systems with low-temperature waste heat and decentralised heat pumps in the building groups show the financially most feasible and, compared to alternatives, most ecological way to supply the new buildings. The planning process for the development of the Reininghaus District is a complex and therefore lengthy process and shall be concretised over the next decades. Optimal energy technology networks and scenarios resulting from the application of the described methods support the framework energy plan. The accumulated knowledge can be used to form smart energy supply solutions as an integral part for the discussion of the stakeholders (investors, city department) to guide the forming of their action plan through the development of the city quarter.
Tài liệu tham khảo
UN (2008) United Nations Expert Group meeting on population distribution, urbanization, internal migration and development, Population Division, Department of Economic and Social Affairs, UN Secretariat, 1-34, http://www.un.org/en/development/desa/population/events/pdf/expert/13/P01_UNPopDiv.pdf.
WHO (2014) Urban population growth, http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/, Download 2015/04/22.
European Smart Cities & Communities Initiative of the Strategic Energy Technology Plan (SET-Plan), http://ec.europa.eu/energy/en/topics/technology-and-innovation/strategic-energy-technology-plan. Download 2015/04/22.
Caragliu A, Del Bo C, Nijkamp P (2011) Smart cities in Europe. Journal of Urban Technology, (18/2):65-82, Special Issue: Creating Smart-er Cities, doi: 10.1080/10630732.2011.601117.
de Jong M, Joss S, Schraven D, Zhan C, Weijnen M (2015) Sustainable–smart–resilient–low carbon–eco–knowledge cities: making sense of a multitude of concepts promoting sustainable urbanization. Journal of Cleaner Production, Available online 10 February 2015, ISSN 0959-6526, 190:25-38, doi: http://dx.doi.org/10.1016/j.jclepro.2015.02.004.
Exner JP (2014) Smart Planning & Smart Cities. Proceedings / Tagungsband REAL CORP 2014, ISBN: 978-3-9503110-6-8 (CD-ROM); ISBN: 978-3-9503110-7-5 (Print), 39:603-610. http://www.corp.at/archive/CORP2014_39.pdf, Download 2015/11/30.
Jaekel M (2015) Smart City wird Realitaet: Wegweiser für neue Urbanitaeten in der Digitalmoderne. Springer Vieweg, Munich, Germany, ISBN 978-3-658-04454-1; ISBN 978-3-658-04455-8 (eBook), 1-312, doi: 10.1007/978-3-658-04455-8.
Batty M, Axhausen K, Fosca G, Pozdnoukhov A, Bazzani A, Wachowicz M, Ouzounis G, Portugali Y (2012) Smart cities of the future. Eur PhysJ Special Topics 214:481–518. doi:10.1140/epjst/e2012-01703-3
Saringer-Bory B, Mollay U, Neugebauer W, Pol O (2012) SmartCitiesNet: Evaluierung von Forschungsthemen und Ausarbeitung von Handlungsempfehlungen für "Smart Cities", Smart City Akteursmatrix. Berichte aus Energie- und Umweltforschung, 38/2012, http://www.smartcities.at/assets/02-Stadtprojekte/endbericht-1238-smartcitiesnet.pdf, Download 2015/11/30.
Greenfield A (2013) Against the smart city: the city is here for you to use, part I. Do projects, New York City, ISBN 9780982438312, 1-153.
European Commission, 2020 climate and energy package, http://ec.europa.eu/clima/policies/strategies/2020/index_en.htm, Download 2015/04/22.
European Commission, 2030 framework for climate and energy policies, http://ec.europa.eu/energy/en/topics/energy-strategy/2030-energy-strategy, Download 2015/04/22.
Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, EUR-Lex, http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=URISERV:en0021&from=EN&isLegissum=true, Introduction, Download 2015/04/22.
Angeliki K and Fokaides PA (2015) European smart cities: the role of zero energy buildings. Sustainable Cities and Society, (15/0):86–95, doi: 10.1016/j.scs.2014.12.003.
Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, EUR-Lex, http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0031, Article 9, Download 2015/04/22.
Baumgartner RJ (2011) Critical perspectives of sustainable development research and practice, J Cleaner Prod. (19/8):783-786, doi: 10.1016/j.jclepro.2011.01.005.
Stoeglehner G, Neugebauer G, Erker S, Narodoslawsky M (2016) Integrated spatial and energy planning—supporting climate protection and the energy turn with means of spatial planning, Springer, 1-115, ISBN: 978-3-319-31868-4 (Print) 978-3-319-31870-7 (Online), doi: 10.1007/978-3-319-31870-7.
Energieraumplanung in Austria—OEREK-Partnerschaft, Oesterreichisches Raumentwicklungskonzept (Austrian Conference of Spatial Planning), http://www.oerok.gv.at/raum-region/oesterreichisches-raumentwicklungskonzept/oerek-2011/umsetzung-oerek-partnerschaften/energieraumplanung.html, Download 2015/06/11.
Das Programm EnergieSchweiz / The SwissEnergy Programme, Schweizerische Eidgenossenschaft, http://www.bfe.admin.ch/energie/00458/index.html?lang=de, Download 2015/06/11.
Energienutzungsplanung in Germany, http://www.energieagentur.nrw.de/handbuch-klimaschutz/energienutzungsplanung-24679.asp, Download 2015/06/11.
Stoeglehner G, Haselsberger B, Hemis H, Bork H, Strasser H, Schatovich R, Stanzer G, Kanning H, Schaffer H, Dumke H, Piha S, Becker S, Wyss A, Arbach C, Klagge B, Wotha B, Rosner K, Christiner G, Fuchs S, Schneider U, Dell G, Stockinger F, Giffinger R, Zech S (2013) Energie und Raum. Forum Raumplanung, Oesterreichische Gesellschaft für Raumplanung. ISBN 978-3-643-50507-1, Technische Universität Wien, Lit Verlag Wien, 20:1-146.
Heinbach K, Aretz A, Hirschl B, Prahl A, Salecki S (2014) Renewable energies and their impact on local value added and employment. Energy, Sustainability and Society 2014, 4:1, 1-10, doi:10.1186/2192-0567-4-1.
Stoeglehner G, Erker S, Neugebauer G (2014) Tools für Energieraumplanung – Ein Handbuch für deren Auswahl und Anwendung im Planungsprozess, Oesterreichische Energieagentur / Austrian Energy Agency, Austrian Climate Initiative, klimaaktiv Dachmanagement, 1-66, www.klimaaktiv.at/dms/klimaaktiv/publikationen/mobilitaet/energieraumplanung/endbericht_tools_26-11-2014klein0/endbericht_tools_26-11-2014klein.pdf, Download 2015/11/30.
Stoeglehner G, N. Niemetz N, Kettl KH (2011) Spatial dimensions of sustainable energy systems: new visions for integrated spatial and energy planning. Energy, Sustainability and Society, 1:2, 1-9, www.energsustainsoc.com/content/1/1/2, doi: 10.1186/2192-0567-1-2.
Lund PD, Mikkola J, Ypyä J (2015) Smart energy system design for large clean power schemes in urban areas. J Cleaner Prod. 103:437-445, ISSN 0959-6526, doi: http://dx.doi.org/10.1016/j.jclepro.2014.06.005.
Nemet A, Klemeš JJ, Varbanov PS, Kravanja Z (2012) Methodology for maximising the use of renewables with variable availability. Energy (44/1), 29-37 doi: dx.doi.org/10.1016/j.energy.2011.12.036.
Maier S, Narodoslawsky M (2014) Optimal Renewable energy systems for smart cities, Computer Aided Chemical Engineering, (33):1849-1854, doi: http://dx.doi.org/10.1016/B978-0-444-63455-9.50143-4.
Austrian Institute for Construction Engineering, http://www.oib.or.at/en, Download 2015/04/22.
Morrissey J, Dunphy N, MacSweeney R (2014) Energy efficiency in commercial buildings: capturing added-value of retrofit. J Prop Invest Financ. 32/4:396-414, doi: http://dx.doi.org/10.1108/JPIF-01-2014-0008.
Baños R, Manzano-Agugliaro F, Montoya FG, Gil C, Alcayde A, Gómez J (2011) Optimization methods applied to renewable and sustainable energy: a review, Renewable and Sustainable Energy Reviews. (15/4):1753-1766, doi: 10.1016/j.rser.2010.12.008.
Energie Graz (energy provider Graz), Information about district heat in Graz, http://www.energie-graz.at/energie/fernwaerme/dienstleistungen/was-ist-fernwaerme-wie-funktioniert-sie, Download 2016/04/26.
Lund H (2014) Renewable energy systems: a smart energy systems approach to the choice and modeling of 100 % renewable solutions. Academic Press, Elsevier, Massachusetts, USA, 978-0-12-410423-5
Vance L, Heckl I, Bertok B, Cabezas H, Friedler F (2015) Designing sustainable energy supply chains by the P-graph method for minimal cost, environmental burden, energy resources input. J Cleaner Prod. 94:144-154, ISSN 0959-6526, doi: http://dx.doi.org/10.1016/j.jclepro.2015.02.011.
Friedler F, Varga JB, Feher E, Fan LT (1996) Combinatorially accelerated branch-and-bound method for solving the MIP model of process network synthesis. Nonconvex Optimization and Its Applications, Computational Methods and Applications (Eds: C. A. Floudas and P. M. Pardalos), Kluwer Academic Publishers, Dordrecht. State of the Art in Global Optimization, Nonconvex Optimization and Its Applications. 7:609-626. doi: http://dx.doi.org/10.1007/978-1-4613-3437-8_35.
Friedler F, Tarján F, Huang Y W, Fan LT (1992) Graph-theoretic approach to process synthesis: axioms and theorems. Chemical Engineering Science, (47/8):1973-1988, doi: http://dx.doi.org/10.1016/0009-2509(92)80315-4.
Friedler et al. (2011) P-graph: p-graph.com/pnsstudio, PNS Software Version 3.0.4, 2011, www.p-graph.com, last accessed on 25/04/2016.
Narodoslawsky M, Niederl A, Halasz L (2008) Utilising renewable resources economically: new challenges and chances for process development. J Cleaner Prod. (16/2):164-170, doi: doi.org/10.1016/j.jclepro.2006.08.023.
Niemetz N, Kettl KH, Eder M, Narodoslawsky M (2012) RegiOpt Conceptual Planner—identifying possible energy network solutions for regions, Chemical Engineering Transactions, 29:517-522, ISBN: 978-88-95608-20-4; ISSN: 1974-9791, doi: 10.3303/CET1229087, http://www.aidic.it/cet/12/29/087.pdf.
Regional Optimiser (RegiOpt), free online access: http://regiopt.tugraz.at/.
Heckl I, Halász L, Szlama A, Cabezas H, Friedler F (2015) Process synthesis involving multi-period operations by the P-graph framework, Computers & Chemical Engineering, 83:157-164, ISSN 0098-1354, doi: http://dx.doi.org/10.1016/j.compchemeng.2015.04.037. (http://dx.doi.org/10.1016/j.compchemeng.2015.04.037).
Stoeglehner G, Baaske W, Mitter H, Niemetz N, Kettl KH, Weiss M, Lancaster B, Neugebauer G (2014) Sustainability appraisal of residential energy demand and supply—a life cycle approach including heating, electricity, embodied energy and mobility, Energy, Sustainability and Society, (4/24):1-13. doi: dx.doi.org/10.1186/s13705-014-0024-6, http://www.energsustainsoc.com/content/4/1/24.
Narodoslawsky M, Krotscheck C (1995) The sustainable process index (SPI): evaluating processes according to environmental compatibility, Journal of Hazardous Materials, (41/2–3):383-397, ISSN 0304-3894, doi: http://dx.doi.org/10.1016/0304-3894(94)00114-V.
Narodoslawsky M (2015) Sustainable process index, Assessing and Measuring Environmental Impact and Sustainability, edited by Jiří Jaromír Klemeš, Butterworth-Heinemann, Oxford, 3:73-86, ISBN 9780127999685, doi: http://dx.doi.org/10.1016/B978-0-12-799968-5.00003-8.
Kollmann R, Eder M, Narodoslawsky M (2014) Der oekologische Fußabdruck der konventionellen und biologischen Landwirtschaft im Vergleich, 15. Alpen-Adria Biosymposium „Bio auf dem Weg zur Schule“ - Bio-Landbau und die Bedeutung von Bio-Lebensmitteln, University of Maribor, Faculty of Agriculture and Life Sciences, Slovenia, 102-110, http://www.bioimpulse.eu/de/images/biosymposium/Biosymposium2014.pdf, Download 2016/01/19.
Kettl KH (2012) Evaluation of energy technology systems based on renewable resources, Dissertation, Institute for Process and Particle Engineering, Graz, Austria, 1-186, (https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=264446&pCurrPk=66462).
ELAS calculator: energetic long-term assessment of settlement structures, 2011, www.elas-calculator.eu, last accessed on 27/08/2014.
Statistics Austria, Population of the city of Graz by 1. 1. 2016, http://www.statistik.at, Download 2016/04/19.
Stadt Graz - data.graz.gv.at, Statistik Austria (2015). Bevoelkerungsprognose Graz 2015 – 2034, Download 2016/04/19.
Federal Chancellery of Austria, Rechtsinformationssystem (legal information system), Landesrecht Steiermark: Gesamte Rechtsvorschrift für Erhaltung der Dachlandschaft im Schutzgebiet nach dem Grazer Altstadterhaltungsgesetz, Fassung vom 26.04.2016, https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=LrStmk&Gesetzesnummer=20000897, Download 2016/04/26.
Research and technology programme Building of Tomorrow, ECR Energy City Graz—subproject 2: Framework-Plan Energy City Graz-Reininghaus, BMVIT (Austrian Ministry for Transport, Innovation and Technology), https://nachhaltigwirtschaften.at/en/hdz/projects/ecr-energy-city-graz-reininghaus-urban-strategies-for-the-newconception-construction-operation-and-restructuring-of-an-energy-self-sufficient-city-district.php, Download 2015/04/22.
Rainer et al. (2015) ECR Energy City Graz—subproject 2: Framework-Plan Energy City Graz-Reininghaus, Rahmenplan Energie, final report.
Stadt Graz, Stadtteilentwicklung, Rahmenplan Graz-Reininghaus, http://www.stadtentwicklung.graz.at/cms/dokumente/10136566_2858034/4ab9da2e/Schlussbericht%20kurz_EULOGO_Text.pdf, Download 2015/06/12.
Calculation of thermal and electric energy demand for OIB-standard, Graz University of Technology, Institute of Electrical Power Systems, Institute of Thermal Engineering, Institute of Process and Particle Engineering (2015).
Calculation of thermal and electric energy demand for NZE-standard, Graz University of Technology, Institute of Electrical Power Systems, Institute of Thermal Engineering, Institute of Process and Particle Engineering (2015).