Small nucleoli are a cellular hallmark of longevity

Nature Communications - Tập 8 Số 1
Varnesh Tiku1, Chirag Jain1, Yotam Raz2, Shuhei Nakamura3, Bree Heestand4, Wei Liu5, Martin R. Späth6, H. Eka D. Suchiman2, Roman‐Ulrich Müller6, P. Eline Slagboom2, Linda Partridge6, Adam Antebi6
1Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, Cologne, 50931, Germany
2Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
3Department of Genetics, Graduate School of Medicine, Osaka University 2-2 Yamadaoka, Suita, 565-0871, Japan
4Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 27599-3280, North Carolina, USA
5Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, 77030, Texas, USA
6Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50674, Germany

Tóm tắt

AbstractAnimal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa.

Từ khóa


Tài liệu tham khảo

Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).

Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

Lapierre, L. R. et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 4, 2267 (2013).

Nakamura, S. et al. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nat. Commun. 7, 10944 (2016).

Johnson, D. W. et al. The Caenorhabditis elegans Myc-Mondo/Mad complexes integrate diverse longevity signals. PLoS Genet. 10, e1004278 (2014).

Burkle, A. et al. MARK-AGE biomarkers of ageing. Mech. Ageing Dev. 151, 2–12 (2015).

Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

Grummt, I. The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma 122, 487–497 (2013).

Boulon, S., Westman, B. J., Hutten, S., Boisvert, F. M. & Lamond, A. I. The nucleolus under stress. Mol. Cell 40, 216–227 (2010).

Heestand, B. N. et al. Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans. PLoS Genet. 9, e1003651 (2013).

Frank, D. J. & Roth, M. B. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J. Cell Biol. 140, 1321–1329 (1998).

Hedgecock, E. M. & Herman, R. K. The ncl-1 gene and genetic mosaics of Caenorhabditis elegans. Genetics 141, 989–1006 (1995).

Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95–110 (2007).

Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295, 502–505 (2002).

Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell 1, 633–644 (2001).

Kaeberlein, M. & Kennedy, B. K. Hot topics in aging research: protein translation and TOR signaling, 2010. Aging Cell 10, 185–190 (2011).

Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922–926 (2007).

Pan, K. Z. et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6, 111–119 (2007).

Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465 (2010).

Lee, L. W., Lee, C. C., Huang, C. R. & Lo, S. J. The nucleolus of Caenorhabditis elegans. J. Biomed. Biotechnol. 2012, 601274 (2012).

Yi, Y. H. et al. A genetic cascade of let-7-ncl-1-fib-1 modulates nucleolar size and rRNA pool in Caenorhabditis elegans. PLoS Genet. 11, e1005580 (2015).

Tessarz, P. et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505, 564–568 (2014).

Buchwalter, A. & Hetzer, M. Nucleolar expansion and elevated protein translation in premature aging. Nat. Commun. 8,.

Kaeberlein, M. & Kennedy, B. K. Large-scale identification in yeast of conserved ageing genes. Mech. Ageing Dev. 126, 17–21 (2005).

Syntichaki, P., Troulinaki, K. & Tavernarakis, N. Protein synthesis is a novel determinant of aging in Caenorhabditis elegans. Ann. NY Acad. Sci. 1119, 289–295 (2007).

Steffen, K. K. et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133, 292–302 (2008).

Rogers, A. N. et al. Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 14, 55–66 (2011).

Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91, 1033–1042 (1997).

Shen, E. Z. et al. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature 508, 128–132 (2014).

Hahm, J. H. et al. C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat. Commun. 6, 8919 (2015).

Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

Lee, L. W., Lo, H. W. & Lo, S. J. Vectors for co-expression of two genes in Caenorhabditis elegans. Gene 455, 16–21 (2010).

Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002 (2001).

Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J. & Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550–555 (2007).

Bass, T. M. et al. Optimization of dietary restriction protocols in Drosophila. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1071–1081 (2007).

Gronke, S., Clarke, D. F., Broughton, S., Andrews, T. D. & Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857 (2010).

Selman, C. et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807–818 (2008).

van de Rest, O. et al. Metabolic effects of a 13-weeks lifestyle intervention in older adults: The Growing Old Together Study. Aging (Albany NY) 8, 111–126 (2016).