Small molecules facilitate single factor-mediated sweat gland cell reprogramming

Ji, Shuai-Fei1,2, Zhou, Lai-Xian1,2, Sun, Zhi-Feng3, Xiang, Jiang-Bing1,2,4, Cui, Shao-Yuan5, Li, Yan1,2, Chen, Hua-Ting1,2, Liu, Yi-Qiong1,2, Gao, Huan-Huan1,2, Fu, Xiao-Bing1,2, Sun, Xiao-Yan1,2
1Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
2Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
3Department of Respiratory, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
4Bioengineering College of Chongqing University, Chongqing, China
5Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China

Tóm tắt

Large skin defects severely disrupt the overall skin structure and can irreversibly damage sweat glands (SG), thus impairing the skin’s physiological function. This study aims to develop a stepwise reprogramming strategy to convert fibroblasts into SG lineages, which may provide a promising method to obtain desirable cell types for the functional repair and regeneration of damaged skin. The expression of the SG markers cytokeratin 5 (CK5), cytokeratin 10 (CK10), cytokeratin 18 (CK18), carcino-embryonic antigen (CEA), aquaporin 5 (AQP5) and α-smooth muscle actin (α-SMA) was assessed with quantitative PCR (qPCR), immunofluorescence and flow cytometry. Calcium activity analysis was conducted to test the function of induced SG-like cells (iSGCs). Mouse xenograft models were also used to evaluate the in vivo regeneration of iSGCs. BALB/c nude mice were randomly divided into a normal group, SGM treatment group and iSGC transplantation group. Immunocytochemical analyses and starch-iodine sweat tests were used to confirm the in vivo regeneration of iSGCs. EDA overexpression drove HDF conversion into iSGCs in SG culture medium (SGM). qPCR indicated significantly increased mRNA levels of the SG markers CK5, CK18 and CEA in iSGCs, and flow cytometry data demonstrated (4.18 ± 0.04)% of iSGCs were CK5 positive and (4.36 ± 0.25)% of iSGCs were CK18 positive. The addition of chemical cocktails greatly accelerated the SG fate program. qPCR results revealed significantly increased mRNA expression of CK5, CK18 and CEA in iSGCs, as well as activation of the duct marker CK10 and luminal functional marker AQP5. Flow cytometry indicated, after the treatment of chemical cocktails, (23.05 ± 2.49)% of iSGCs expressed CK5+ and (55.79 ± 3.18)% of iSGCs expressed CK18+, respectively. Calcium activity analysis indicated that the reactivity of iSGCs to acetylcholine was close to that of primary SG cells [(60.79 ± 7.71)% vs. (70.59 ± 0.34)%, ns]. In vivo transplantation experiments showed approximately (5.2 ± 1.1)% of the mice were sweat test positive, and the histological analysis results indicated that regenerated SG structures were present in iSGCs-treated mice. We developed a SG reprogramming strategy to generate functional iSGCs from HDFs by using the single factor EDA in combination with SGM and small molecules. The generation of iSGCs has important implications for future in situ skin regeneration with SG restoration.

Từ khóa


Tài liệu tham khảo

citation_journal_title=Temperature (Austin); citation_title=Physiology of sweat gland function: the roles of sweating and sweat composition in human health; citation_author=LB Baker; citation_volume=6; citation_issue=3; citation_publication_date=2019; citation_pages=211-259; citation_id=CR1 citation_journal_title=Int J Environ Res Public Health; citation_title=Comparative study of the composition of sweat from eccrine and apocrine sweat glands during exercise and in heat; citation_author=YL Chen, WH Kuan, CL Liu; citation_volume=17; citation_issue=10; citation_publication_date=2020; citation_pages=3377; citation_id=CR2 citation_journal_title=Cell; citation_title=Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair; citation_author=CP Lu, L Polak, AS Rocha, HA Pasolli, SC Chen, N Sharma; citation_volume=150; citation_issue=1; citation_publication_date=2012; citation_pages=136-150; citation_id=CR3 citation_journal_title=Adv Sci (Weinh); citation_title=Sweat gland organoids originating from reprogrammed epidermal keratinocytes functionally recapitulated damaged skin; citation_author=X Sun, J Xiang, R Chen, Z Geng, L Wang, Y Liu; citation_volume=8; citation_issue=22; citation_publication_date=2021; citation_pages=e2103079; citation_id=CR4 citation_journal_title=Stem Cell Res Ther; citation_title=Targeting ectodysplasin promotor by CRISPR/dCas9-effector effectively induces the reprogramming of human bone marrow-derived mesenchymal stem cells into sweat gland-like cells; citation_author=S Sun, J Xiao, J Huo, Z Geng, K Ma, X Sun; citation_volume=9; citation_issue=1; citation_publication_date=2018; citation_pages=8; citation_id=CR5 citation_journal_title=Acta Pharmacol Sin; citation_title=Chemical cocktails enable hepatic reprogramming of human urine-derived cells with a single transcription factor; citation_author=W Tang, R Guo, SJ Shen, Y Zheng, YT Lu, MM Jiang; citation_volume=40; citation_issue=5; citation_publication_date=2019; citation_pages=620-629; citation_id=CR6 citation_journal_title=Stem Cell Reports; citation_title=Chemical cocktails enable hepatic reprogramming of mouse fibroblasts with a single transcription factor; citation_author=R Guo, W Tang, Q Yuan, L Hui, X Wang, X Xie; citation_volume=9; citation_issue=2; citation_publication_date=2017; citation_pages=499-512; citation_id=CR7 citation_journal_title=Cell Rep; citation_title=Small molecules facilitate single factor-mediated hepatic reprogramming; citation_author=KT Lim, SC Lee, Y Gao, KP Kim, G Song, SY An; citation_volume=15; citation_issue=4; citation_publication_date=2016; citation_pages=814-829; citation_id=CR8 citation_journal_title=Genes Dev; citation_title=Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells; citation_author=M Yagi, F Ji, J Charlton, S Cristea, K Messemer, N Horwitz; citation_volume=35; citation_issue=17–18; citation_publication_date=2021; citation_pages=1209-1228; citation_id=CR9 citation_journal_title=Cell; citation_title=In vivo cellular reprogramming: the next generation; citation_author=D Srivastava, N Dewitt; citation_volume=166; citation_issue=6; citation_publication_date=2016; citation_pages=1386-1396; citation_id=CR10 citation_journal_title=Cell Mol Life Sci; citation_title=Small molecules for reprogramming and transdifferentiation; citation_author=H Qin, A Zhao, X Fu; citation_volume=74; citation_issue=19; citation_publication_date=2017; citation_pages=3553-3575; citation_id=CR11 citation_journal_title=Curr Mol Med; citation_title=A revolution in reprogramming: small molecules; citation_author=J Zhou, J Sun; citation_volume=19; citation_issue=2; citation_publication_date=2019; citation_pages=77-90; citation_id=CR12 citation_journal_title=Acc Chem Res; citation_title=Pharmacological reprogramming of somatic cells for regenerative medicine; citation_author=M Xie, S Tang, K Li, S Ding; citation_volume=50; citation_issue=5; citation_publication_date=2017; citation_pages=1202-1211; citation_id=CR13 citation_journal_title=Protein Cell; citation_title=Reprogramming cell fates by small molecules; citation_author=X Ma, L Kong, S Zhu; citation_volume=8; citation_issue=5; citation_publication_date=2017; citation_pages=328-348; citation_id=CR14 citation_journal_title=Science; citation_title=Conversion of human fibroblasts into functional cardiomyocytes by small molecules; citation_author=N Cao, Y Huang, J Zheng, CI Spencer, Y Zhang, JD Fu; citation_volume=352; citation_issue=6290; citation_publication_date=2016; citation_pages=1216-1220; citation_id=CR15 citation_journal_title=Biomaterials; citation_title=Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration; citation_author=Q Wang, Y Song, J Chen, Q Li, J Gao, H Tan; citation_volume=276; citation_publication_date=2021; citation_pages=121028; citation_id=CR16 citation_journal_title=Cell Stem Cell; citation_title=Direct in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarction; citation_author=K Miyamoto, M Akiyama, F Tamura, M Isomi, H Yamakawa, T Sadahiro; citation_volume=22; citation_issue=1; citation_publication_date=2018; citation_pages=91-103; citation_id=CR17 citation_journal_title=Cell Metab; citation_title=Metabolic orchestration of the wound healing response; citation_author=SA Eming, PJ Murray, EJ Pearce; citation_volume=33; citation_issue=9; citation_publication_date=2021; citation_pages=1726-1743; citation_id=CR18 citation_title=Institutional animal care and use committee guidebook; citation_publication_date=2002; citation_id=CR19; citation_author=M Pitts; citation_author=K Bayne; citation_author=LC Anderson; citation_author=DB Bernhardt; citation_author=M Greene; citation_author=H Klemfuss; citation_publisher=OLAW citation_journal_title=Stem Cells Transl Med; citation_title=Role of keratinocyte growth factor in the differentiation of sweat gland-like cells from human umbilical cord-derived mesenchymal stem cells; citation_author=Y Xu, Y Hong, M Xu, K Ma, X Fu, M Zhang; citation_volume=5; citation_issue=1; citation_publication_date=2016; citation_pages=106-116; citation_id=CR20 citation_journal_title=Nat Rev Mol Cell Biol; citation_title=Direct cell reprogramming: approaches, mechanisms and progress; citation_author=H Wang, Y Yang, J Liu, L Qian; citation_volume=22; citation_issue=6; citation_publication_date=2021; citation_pages=410-424; citation_id=CR21 citation_journal_title=Semin Cell Dev Biol; citation_title=Direct reprogramming as a route to cardiac repair; citation_author=GA Garry, R Bassel-Duby, EN Olson; citation_volume=122; citation_publication_date=2022; citation_pages=3-13; citation_id=CR22 citation_journal_title=J Hepatol; citation_title=Direct reprogramming of somatic cells into induced hepatocytes: cracking the enigma code; citation_author=M Rombaut, J Boeckmans, RM Rodrigues, LA Grunsven, T Vanhaecke, J Kock; citation_volume=75; citation_issue=3; citation_publication_date=2021; citation_pages=690-705; citation_id=CR23 citation_journal_title=Gut; citation_title=Reprogramming the spleen into a functioning 'liver' in vivo; citation_author=C Liu, L Wang, M Xu, Y Sun, Z Xing, J Zhang; citation_publication_date=2022; citation_doi=10.1136/gutjnl-2021-325018; citation_id=CR24 citation_journal_title=Elife; citation_title=Generation of inner ear hair cells by direct lineage conversion of primary somatic cells; citation_author=L Menendez, T Trecek, S Gopalakrishnan, L Tao, AL Markowitz, HV Yu; citation_volume=9; citation_publication_date=2020; citation_pages=e55249; citation_id=CR25 citation_journal_title=Stem Cell Rep; citation_title=CRISPR/Cas9 editing of directly reprogrammed myogenic progenitors restores dystrophin expression in a mouse model of muscular dystrophy; citation_author=SA Domenig, N Bundschuh, A Lenardic, A Ghosh, I Kim, X Qabrati; citation_volume=17; citation_issue=2; citation_publication_date=2021; citation_pages=321-336; citation_id=CR26 citation_journal_title=Cells; citation_title=Inhibition of CREB-CBP signaling improves fibroblast plasticity for direct cardiac reprogramming; citation_author=E Bektik, Y Sun, AT Dennis, P Sakon, D Yang, I Deschenes; citation_volume=10; citation_issue=7; citation_publication_date=2021; citation_pages=1572; citation_id=CR27 citation_journal_title=Development; citation_title=Involvement of Wnt, Eda and Shh at defined stages of sweat gland development; citation_author=CY Cui, M Yin, J Sima, V Childress, M Michel, Y Piao; citation_volume=141; citation_issue=19; citation_publication_date=2014; citation_pages=3752-3760; citation_id=CR28 citation_journal_title=Front Cell Dev Biol.; citation_title=Eccrine sweat gland and its regeneration: current status and future directions; citation_author=Y Lin, L Chen, M Zhang, S Xie, L Du, X Zhang; citation_volume=9; citation_publication_date=2021; citation_pages=667765; citation_id=CR29 citation_journal_title=Hum Mol Genet; citation_title=Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in Tabby mice; citation_author=AK Srivastava, MC Durmowicz, AJ Hartung, J Hudson, LV Ouzts, DM Donovan; citation_volume=10; citation_issue=26; citation_publication_date=2001; citation_pages=2973-2981; citation_id=CR30 citation_journal_title=Science; citation_title=Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision; citation_author=CP Lu, L Polak, BE Keyes, E Fuchs; citation_volume=354; citation_issue=6319; citation_publication_date=2016; citation_pages=6102; citation_id=CR31 citation_journal_title=Hum Mutat; citation_title=Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases; citation_author=C Cluzeau, S Hadj-Rabia, M Jambou, S Mansour, P Guigue, S Masmoudi; citation_volume=32; citation_issue=1; citation_publication_date=2011; citation_pages=70-72; citation_id=CR32 citation_journal_title=Biomaterials; citation_title=Sweat gland regeneration: current strategies and future opportunities; citation_author=R Chen, Z Zhu, S Ji, Z Geng, Q Hou, X Sun; citation_volume=255; citation_publication_date=2020; citation_pages=120201; citation_id=CR33 citation_journal_title=Stem Cells Int; citation_title=Developing a novel and convenient model for investigating sweat gland morphogenesis from epidermal stem cells; citation_author=T Hu, Y Xu, B Yao, X Fu, S Huang; citation_volume=2019; citation_publication_date=2019; citation_pages=4254759; citation_id=CR34 citation_journal_title=Differentiation; citation_title=Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate; citation_author=A Mammadova, H Zhou, CE Carels, JW Hoff; citation_volume=92; citation_issue=5; citation_publication_date=2016; citation_pages=326-335; citation_id=CR35 citation_journal_title=Development; citation_title=RDH10-mediated retinol metabolism and RARalpha-mediated retinoic acid signaling are required for submandibular salivary gland initiation; citation_author=MA Metzler, S Raja, KH Elliott, RM Friedl, NQH Tran, SA Brugmann; citation_volume=145; citation_issue=15; citation_publication_date=2018; citation_pages=dev164822; citation_id=CR36 citation_journal_title=Dev Biol; citation_title=Retinoic acid regulates embryonic development of mammalian submandibular salivary glands; citation_author=DM Wright, DE Buenger, TM Abashev, RP Lindeman, J Ding, LL Sandell; citation_volume=407; citation_issue=1; citation_publication_date=2015; citation_pages=57-67; citation_id=CR37 citation_journal_title=Nutrients; citation_title=Role of vitamin a in mammary gland development and lactation; citation_author=MT Cabezuelo, R Zaragoza, T Barber, JR Vina; citation_volume=12; citation_issue=1; citation_publication_date=2019; citation_pages=80; citation_id=CR38 citation_journal_title=Curr Protoc Stem Cell Biol; citation_title=Deriving keratinocyte progenitor cells and keratinocytes from human-induced pluripotent stem cells; citation_author=MR Ibrahim, W Medhat, H El-Fakahany, H Abdel-Raouf, EY Snyder; citation_volume=54; citation_issue=1; citation_publication_date=2020; citation_pages=e119; citation_id=CR39 citation_journal_title=Cell Stem Cell; citation_title=Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation; citation_author=M Zhang, YH Lin, YJ Sun, S Zhu, J Zheng, K Liu; citation_volume=18; citation_issue=5; citation_publication_date=2016; citation_pages=653-667; citation_id=CR40 citation_journal_title=Cell Stem Cell; citation_title=Small molecules efficiently reprogram human astroglial cells into functional neurons; citation_author=L Zhang, JC Yin, H Yeh, NX Ma, G Lee, XA Chen; citation_volume=17; citation_issue=6; citation_publication_date=2015; citation_pages=735-747; citation_id=CR41 citation_journal_title=Int J Biol Sci; citation_title=Stagewise keratinocyte differentiation from human embryonic stem cells by defined signal transduction modulators; citation_author=H Zhong, Z Ren, X Wang, K Miao, W Ni, Y Meng; citation_volume=16; citation_issue=8; citation_publication_date=2020; citation_pages=1450-1462; citation_id=CR42