Sóng dẫn lớp với lớp lõi không khí và lớp vật liệu trái tay phân cực dị hướng dùng làm cảm biến

Opto-Electronics Review - Tập 22 - Trang 252-257 - 2014
S. A. Taya1
1Physics Department, Islamic University of Gaza, Gaza, Palestinian Authority

Tóm tắt

Một cấu trúc sóng dẫn ba lớp với lớp lõi không khí và lớp vật liệu trái tay phân cực dị hướng đã được nghiên cứu cho các ứng dụng cảm biến. Khác với các cảm biến chế độ sóng dẫn và cảm biến cộng hưởng plasmon bề mặt, nơi mà mẫu phân tích được đặt trong vùng trường suy giảm, cảm biến được đề xuất chứa mẫu trong vùng lõi hỗ trợ trường dao động. Do sự tập trung mạnh của trường điện từ trong môi trường mẫu phân tích, thiết bị được đề xuất thể hiện sự cải thiện độ nhạy bất thường. Các mô phỏng đã chỉ ra rằng sự cải thiện độ nhạy của chế độ TE3 so với cảm biến sóng suy giảm thông thường khoảng gấp 20 lần.

Từ khóa

#sóng dẫn #cảm biến #vật liệu trái tay #độ nhạy #điện từ

Tài liệu tham khảo

A. Schuster, An Introduction to the Theory of Optics, E. Arnold, London, 1909. V.M. Agranovich and Yu.N. Gartstein, “Spatial dispersion and negative refraction of light”, Phys-Usp. 49, 1029–1044 (2006). V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of ĺ and μ”, Sov. Phy. Usp. 10, 509–514 (1968). D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Phys. Rev. Lett. 84, 4184–4187 (2000). S.A. Taya, E.J. El-Farram, and M. M. Abadla, “Symmetric multilayer slab waveguide structure with a negative index material: TM case”, Optik — Int. J. Light Electron Opt. 123, 2264–2268 (2012). R. Güther, “Descartes ovaloides for negative refractive indices and their aplanatic cases”, Optik — Int. J. Light Electron Opt. 119, 577–583 (2008). S.A. Taya and I.M. Qadoura, “Guided modes in slab waveguides with negative index cladding and substrate”, Optik — Int. J. Light Electron Opt. 124, 1431–1436 (2013). M.A. Grado-Caffaro and M. Grado-Caffaro, “Photon mass and negative index of refraction”, Optik — Int. J. Light Electron Opt. 118, 353–354 (2007). S.A. Taya and K.Y. Elwasife, “Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer”, Int. J. Research and Reviews in Applied Sciences 13, 294–305 (2012). I.M. Qadoura, S.A. Taya, and K.Y. El-Wasife, “Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials”, Int. J. Microwave and Optical Technology 7, 349–357 (2012). A. Grbic and G.V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial”, J. Appl. Phys. 92, 5930–5935 (2002). M.A. Abadla and S.A. Taya, “Characteristics of left-handed multilayer slab waveguide structure”, The Islamic University Journal (Series of Natural Studies and Engineering) 19, 57–70 (2011). S.A. Taya, H.M. Kullab, and I.M. Qadoura, “Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate”, J. Opt. Soc. Am. B30, 2008–2013 (2013). I.V. Shadrivov, A.A. Sukhorukov, Y.S. Kivshar, A.A. Zharov, A.D. Boardman, and P. Egan, “Nonlinear surface waves in left-handed materials”, Phys. Rev. E69, 016617 (2004). M. Abadla and S.A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal”, Optik — Int. J. Light Electron Opt. 125, 1401–1405 (2014). K. Tiefenthaler and W. Lukosz, “Integrated optical switches and glass sensor”, Opt. Lett. 10, 137–139 (1984). R. Horvath, G. Fricsovszky, and E. Pap, “Application of the optical waveguide light mode spectroscopy to monitor lipid bilayer phase transition”, Biosens. Bioelectron. 18, 415–428 (2003). S.A. Taya and T.M. El-Agez, “Comparing optical sensing using slab waveguides and total internal reflection ellipsometry”, Turk. J. Phys. 35, 31–36 (2011). T.M. El-Agez and S.A. Taya, “Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors”, Opt. Appl. 41, 89–95 (2011). S.A. Taya, E.J. El-Farram, and T.M. El-Agez, “Goos Hänchen shift as a probe in evanescent slab waveguide sensors”, Int. J. Electron. Commun. (AEU) 66, 204–210 (2012). B. Kuswandi, “Simple optical fibre biosensor based on immobilized enzyme for monitoring of trace having metal ions”, Anal. Bioanal. Chem. 376, 1104–1110 (2003). S.A. Taya and T.M. El-Agez, “Slab waveguide sensor based on amplified phase change due to multiple total internal reflections”, Turk. J. Phys. 36, 67–76 (2012). E. Udd, “An overview of fibre optic sensors”, Rev. Sci. Instrum. 66, 4015–4030 (1995). F.C. Chien and S.J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes”, Biosens. Bioelectron. 20, 633–642 (2004). J. Homola, S.S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review”, Sens. Actuat. B54, 3–15 (1999). H.M. Kullab and S.A. Taya, “Transverse magnetic peak type metal-clad optical waveguide sensor”, Optik — Int. J. Light Electron Opt. 145, 97–100 (2014). N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors”, Sens. Actuat. B106, 668–676 (2005). H.M. Kullab, S.A. Taya, and T.M. El-Agez, “Metal-clad waveguide sensor using a left-handed material as a core layer”, J. Opt. Soc. Am. B29, 959–964 (2012). N. Skivesen, R. Horvath, and H. Pedersen, “Peak-type and dip-type metal-clad waveguide Sensing”, Opt. Lett. 30, 1659–1661 (2005). H.M. Kullab and S.A. Taya, “Peak type metal-clad waveguide sensor using negative index materials”, Int. J. Electron. Commun. 67, 905–992 (2013). S.A. Taya and T.M. El-Agez, “Optical sensors based on Fabry-Perot resonator and fringes of equal thickness structure”, Optik — Int. J. Light Electron Opt. 123, 417–421 (2012). N. Skivensen, R. Horvath, S. Thinggaaed, N.B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors”, Biosens. Bioelectron. 22, 1282–128 (2007). S.A. Taya and T.M. El-Agez, “Reverse symmetry optical waveguide sensor using plasma substrate”, J. Opt. 13, 075701 (2011). A. Densmore, D.X. Xu, P. Waldron, S. Janz, P. Cheben, and J. Lapointe, “A silicon-on-insulator photonic wire based evanescent field sensor”, IEEE Photonic Tech. L. 18, 2520–2522 (2006). L.F. Shen, J.C. Qiu, and Z.H. Wang, “Guided Modes in a Slab Waveguide with Air Core Layer and Left-handed Materials Claddings”, Proc. Progress in Electromagnetics Research Symposium, Suzhou, China, 1043–1048 (2011). S.-S. Lo, M.-S. Wang, and C.-C. Chen, “Semiconductor hollow optical waveguides formed by omni-directional reflectors”, Opt. Express 12, 6589–6593 (2004). H. Schmidt, Y. Dongliang, J.P. Barber, and A.R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids”, IEEE J. Selected Topics in Quantum Electronics 11, 519–527 2005. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors”, J. Opt. Soc. Am. B6, 209–220 (1989).