Skyrmion devices for memory and logic applications

APL Materials - Tập 9 Số 5 - 2021
Shijiang Luo1, Long You2
1Data Center Technology Laboratory, Huawei Technologies Co., Ltd. 1 , Shenzhen 518129, China
2School of Optical and Electronic Information, Huazhong University of Science and Technology 2 , Wuhan 430074, China

Tóm tắt

Skyrmions have received considerable attention in various studies since the experimental observation in magnetic materials in 2009. Skyrmions, which are topological, particle-like localized structures, show significant fundamental research value in the field of physics and materials and are also regarded as novel information carriers that have the potential for use in developing high-density, low-power, and multi-functional spintronic devices. In this Perspective, we first overview the development, structure, and materials of skyrmions. Subsequently, we focus on the recent progress in skyrmion devices for memory and logic applications and discuss their challenges and prospects.

Từ khóa


Tài liệu tham khảo

1962, A unified field theory of mesons and baryons, Nucl. Phys., 31, 556, 10.1016/0029-5582(62)90775-7

1989, Crystalline liquids: The blue phases, Rev. Mod. Phys., 61, 385, 10.1103/revmodphys.61.385

1989, Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets, Sov. Phys. JETP, 68, 101

1993, Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies, Phys. Rev. B, 47, 16419, 10.1103/physrevb.47.16419

1998, Spinor Bose condensates in optical traps, Phys. Rev. Lett., 81, 742, 10.1103/physrevlett.81.742

1996, Evidence of skyrmion excitations about ν = 1 in n-modulation-doped single quantum wells by interband optical transmission, Phys. Rev. Lett., 76, 680, 10.1103/physrevlett.76.680

2009, Skyrmion lattice in a chiral magnet, Science, 323, 915, 10.1126/science.1166767

2010, Real-space observation of a two-dimensional skyrmion crystal, Nature, 465, 901, 10.1038/nature09124

2019, Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum, Nat. Phys., 15, 650, 10.1038/s41567-019-0487-7

2019, Observation of room-temperature polar skyrmions, Nature, 568, 368, 10.1038/s41586-019-1092-8

2020, The 2020 skyrmionics roadmap, J. Phys. D: Appl. Phys., 53, 363001, 10.1088/1361-6463/ab8418

2020, Skyrmion-electronics: Writing, deleting, reading and processing magnetic skyrmions toward spintronic applications, J. Phys.: Condens. Matter, 32, 143001, 10.1088/1361-648x/ab5488

2018, Perspective: Magnetic skyrmions-overview of recent progress in an active research field, J. Appl. Phys., 124, 240901, 10.1063/1.5048972

2017, Skyrmions in magnetic multilayers, Phys. Rep., 704, 1, 10.1016/j.physrep.2017.08.001

2017, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater., 2, 17031, 10.1038/natrevmats.2017.31

2016, Skyrmion-electronics: An overview and outlook, Proc. IEEE, 104, 2040, 10.1109/jproc.2016.2591578

2016, Magnetic skyrmions: From fundamental to applications, J. Phys. D: Appl. Phys., 49, 423001, 10.1088/0022-3727/49/42/423001

2011, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys., 7, 713, 10.1038/nphys2045

2010, Spin transfer torques in MnSi at ultralow current densities, Science, 330, 1648, 10.1126/science.1195709

2012, Skyrmion flow near room temperature in an ultralow current density, Nat. Commun., 3, 988, 10.1038/ncomms1990

2013, Skyrmions on the track, Nat. Nanotechnol., 8, 152, 10.1038/nnano.2013.29

2013, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol., 8, 899, 10.1038/nnano.2013.243

2011, Dynamics of skyrmion crystals in metallic thin films, Phys. Rev. Lett., 107, 136804, 10.1103/physrevlett.107.136804

2016, Direct observation of the skyrmion Hall effect, Nat. Phys., 13, 162, 10.1038/nphys3883

2016, Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy, Nat. Phys., 13, 170, 10.1038/nphys4000

2010, Skyrmion lattice in the doped semiconductor Fe1−xCoxSi, Phys. Rev. B, 81, 041203(R), 10.1103/physrevb.81.041203

2010, Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nat. Mater., 10, 106, 10.1038/nmat2916

2015, Blowing magnetic skyrmion bubbles, Science, 349, 283, 10.1126/science.aaa1442

2016, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nat. Nanotechnol., 11, 444, 10.1038/nnano.2015.313

2016, Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures, Nat. Nanotechnol., 11, 830, 10.1038/nnano.2015.315

2016, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nat. Mater., 15, 501, 10.1038/nmat4593

2017, Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers, Nat. Mater., 16, 4939, 10.1038/nmat4934

2016, Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry, Nano Lett., 16, 1981, 10.1021/acs.nanolett.5b05257

2018, Room-temperature skyrmions in an antiferromagnet-based heterostructure, Nano Lett., 18, 980, 10.1021/acs.nanolett.7b04400

2020, Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination, Nat. Commun., 11, 949, 10.1038/s41467-020-14769-0

2020, Room-temperature skyrmions at zero field in exchange-biased ultrathin films, Phys. Rev. Appl., 13, 044079, 10.1103/physrevapplied.13.044079

2012, Observation of skyrmions in a multiferroic material, Science, 336, 198, 10.1126/science.1214143

2015, A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nat. Commun., 6, 7638, 10.1038/ncomms8638

2017, Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy, Adv. Mater., 29, 1701144, 10.1002/adma.201701144

2018, Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet, Nat. Nanotech., 13, 1154, 10.1038/s41565-018-0255-3

2020, Electron beam lithography of magnetic skyrmions, Adv. Mater., 32, 2003003, 10.1002/adma.202003003

2008, Magnetic domain-wall racetrack memory, Science, 320, 190, 10.1126/science.1145799

2015, Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack, J. Phys. D: Appl. Phys., 48, 115004, 10.1088/0022-3727/48/11/115004

2013, Writing and deleting single magnetic skyrmions, Science, 341, 636, 10.1126/science.1240573

2013, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol., 8, 839, 10.1038/nnano.2013.210

2019, Deterministic field-free skyrmion nucleation at a nanoengineered injector device, Nano Lett., 19, 7246, 10.1021/acs.nanolett.9b02840

2018, Current-induced skyrmion generation through morphological thermal transitions in chiral ferromagnetic heterostructures, Adv. Mater., 30, 1805461, 10.1002/adma.201805461

2017, Electric-field-driven switching of individual magnetic skyrmions, Nat. Nanotechnol., 12, 123, 10.1038/nnano.2016.234

2017, The skyrmion switch: Turning magnetic skyrmion bubbles on and off with an electric field, Nano Lett., 17, 3006, 10.1021/acs.nanolett.7b00328

2015, Perpendicular reading of single confined magnetic skyrmions, Nat. Commun., 6, 8541, 10.1038/ncomms9541

2015, Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance, Nat. Nanotechnol., 10, 1039, 10.1038/nnano.2015.218

2015, Topological spin Hall effect resulting from magnetic skyrmions, Phys. Rev. B, 92, 024411, 10.1103/physrevb.92.024411

2017, Room-temperature skyrmion shift device for memory application, Nano Lett., 17, 261, 10.1021/acs.nanolett.6b04010

2017, Room-temperature current-induced generation and motion of sub-100 nm skyrmions, Nano Lett., 17, 2703, 10.1021/acs.nanolett.7b00649

2016, Magnetic bilayer-skyrmions without skyrmion Hall effect, Nat. Commun., 7, 10293, 10.1038/ncomms10293

2020, Realization of isolated and high-density skyrmions at room temperature in uncompensated synthetic antiferromagnets, Nano Lett., 20, 3299, 10.1021/acs.nanolett.0c00116

2016, Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature, Phys. Rev. Lett., 116, 147203, 10.1103/physrevlett.116.147203

2016, Antiferromagnetic skyrmion: Stability, creation and manipulation, Sci. Rep., 6, 24795, 10.1038/srep24795

2020, Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets, Nat. Mater., 19, 34, 10.1038/s41563-019-0468-3

2018, Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films, Nat. Commun., 9, 959, 10.1038/s41467-018-03378-7

2017, Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy, Nanoscale, 9, 10212, 10.1039/c7nr01980g

2017, An improved racetrack structure for transporting a skyrmion, Sci. Rep., 7, 45330, 10.1038/srep45330

2015, Guided current-induced skyrmion motion in 1D potential well, Sci. Rep., 5, 10620, 10.1038/srep10620

2018, Asymmetric skyrmion Hall effect in systems with a hybrid Dzyaloshinskii-Moriya interaction, Phys. Rev. B, 97, 224427, 10.1103/physrevb.97.224427

2010, Dynamic notch pinning fields for domain walls in ferromagnetic nanowires, IEEE Trans. Magn., 46, 1559, 10.1109/tmag.2010.2041044

2020, Robust skyrmion shift device through engineering the local exchange-bias field, Phys. Rev. Appl., 14, 044008, 10.1103/physrevapplied.14.044008

2015, Capturing of a magnetic skyrmion with a hole, Phys. Rev. B, 91, 054410, 10.1103/physrevb.91.054410

2016, Voltage controlled magnetic skyrmion motion for racetrack memory, Sci. Rep., 6, 23164, 10.1038/srep23164

2016, Spin-transfer torque memories: Devices, circuits, and systems, Proc. IEEE, 104, 1449, 10.1109/jproc.2016.2521712

2017, Review of physics-based compact models for emerging nonvolatile memories, J. Comput. Electron., 16, 1257, 10.1007/s10825-017-1098-0

2018, Skyrmions in magnetic tunnel junctions, ACS Appl. Mater. Interfaces, 10, 16887, 10.1021/acsami.8b03812

2020, Thermally assisted skyrmion memory (TA-SKM), IEEE Electron Device Lett., 41, 932, 10.1109/led.2020.2986312

2018, Strain-mediated voltage-controlled switching of magnetic skyrmions in nanostructures, npj Comput. Mater., 4, 62, 10.1038/s41524-018-0119-2

2020, Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure, Nat. Commun., 11, 3577, 10.1038/s41467-020-17354-7

1971, Memristor: The missing circuit element, IEEE Trans. Circuit Theory, 18, 507, 10.1109/tct.1971.1083337

2019, A spin–orbit-torque memristive device, Adv. Electron. Mater., 5, 1800782, 10.1002/aelm.201800782

2017, Magnetic skyrmion-based synaptic devices, Nanotechnology, 28, 08LT02, 10.1088/1361-6528/aa5838

2020, Skyrmion-based artificial synapses for neuromorphic computing, Nat. Electron., 3, 148, 10.1038/s41928-020-0385-0

2019, Voltage-controlled skyrmion memristor for energy-efficient synapse applications, IEEE Electron Device Lett., 40, 635, 10.1109/led.2019.2898275

2015, Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions, Sci. Rep., 5, 9400, 10.1038/srep09400

2016, Skyrmion domain wall collision and domain wall-gated skyrmion logic, Phys. Rev. B, 94, 054408, 10.1103/physrevb.94.054408

2017, Current induced dynamics of multiple skyrmions with domain wall pair and skyrmion-based majority gate design, IEEE Mag. Lett., 8, 4305705, 10.1109/lmag.2017.2689721

2018, Reconfigurable skyrmion logic gates, Nano Lett., 18, 1180, 10.1021/acs.nanolett.7b04722

2019, Skyrmion logic system for large-scale reversible computation, Phys. Rev. Appl., 12, 064053, 10.1103/physrevapplied.12.064053

2019, SkyLogic—A proposal for a skyrmion-based logic device, IEEE Trans. Electron Devices, 66, 1990, 10.1109/ted.2019.2899263

2019, Skyrmion-based ultra-low power electric-field-controlled reconfigurable (SUPER) logic gate, IEEE Electron Device Lett., 40, 1984, 10.1109/led.2019.2946863

2020, Skyrmion latch and flip-flop in magnetic nanotracks with gradient anisotropy, J. Magn. Magn. Mater., 494, 165739, 10.1016/j.jmmm.2019.165739

2020, Stochastic computing implemented by skyrmionic logic devices, Phys. Rev. Appl., 13, 054049, 10.1103/physrevapplied.13.054049