Skyrmion devices for memory and logic applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
1962, A unified field theory of mesons and baryons, Nucl. Phys., 31, 556, 10.1016/0029-5582(62)90775-7
1989, Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets, Sov. Phys. JETP, 68, 101
1993, Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies, Phys. Rev. B, 47, 16419, 10.1103/physrevb.47.16419
1998, Spinor Bose condensates in optical traps, Phys. Rev. Lett., 81, 742, 10.1103/physrevlett.81.742
1996, Evidence of skyrmion excitations about ν = 1 in n-modulation-doped single quantum wells by interband optical transmission, Phys. Rev. Lett., 76, 680, 10.1103/physrevlett.76.680
2010, Real-space observation of a two-dimensional skyrmion crystal, Nature, 465, 901, 10.1038/nature09124
2019, Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum, Nat. Phys., 15, 650, 10.1038/s41567-019-0487-7
2020, Skyrmion-electronics: Writing, deleting, reading and processing magnetic skyrmions toward spintronic applications, J. Phys.: Condens. Matter, 32, 143001, 10.1088/1361-648x/ab5488
2018, Perspective: Magnetic skyrmions-overview of recent progress in an active research field, J. Appl. Phys., 124, 240901, 10.1063/1.5048972
2017, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater., 2, 17031, 10.1038/natrevmats.2017.31
2016, Skyrmion-electronics: An overview and outlook, Proc. IEEE, 104, 2040, 10.1109/jproc.2016.2591578
2016, Magnetic skyrmions: From fundamental to applications, J. Phys. D: Appl. Phys., 49, 423001, 10.1088/0022-3727/49/42/423001
2011, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys., 7, 713, 10.1038/nphys2045
2010, Spin transfer torques in MnSi at ultralow current densities, Science, 330, 1648, 10.1126/science.1195709
2012, Skyrmion flow near room temperature in an ultralow current density, Nat. Commun., 3, 988, 10.1038/ncomms1990
2013, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol., 8, 899, 10.1038/nnano.2013.243
2011, Dynamics of skyrmion crystals in metallic thin films, Phys. Rev. Lett., 107, 136804, 10.1103/physrevlett.107.136804
2016, Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy, Nat. Phys., 13, 170, 10.1038/nphys4000
2010, Skyrmion lattice in the doped semiconductor Fe1−xCoxSi, Phys. Rev. B, 81, 041203(R), 10.1103/physrevb.81.041203
2010, Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nat. Mater., 10, 106, 10.1038/nmat2916
2016, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nat. Nanotechnol., 11, 444, 10.1038/nnano.2015.313
2016, Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures, Nat. Nanotechnol., 11, 830, 10.1038/nnano.2015.315
2016, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nat. Mater., 15, 501, 10.1038/nmat4593
2017, Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers, Nat. Mater., 16, 4939, 10.1038/nmat4934
2016, Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry, Nano Lett., 16, 1981, 10.1021/acs.nanolett.5b05257
2018, Room-temperature skyrmions in an antiferromagnet-based heterostructure, Nano Lett., 18, 980, 10.1021/acs.nanolett.7b04400
2020, Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination, Nat. Commun., 11, 949, 10.1038/s41467-020-14769-0
2020, Room-temperature skyrmions at zero field in exchange-biased ultrathin films, Phys. Rev. Appl., 13, 044079, 10.1103/physrevapplied.13.044079
2012, Observation of skyrmions in a multiferroic material, Science, 336, 198, 10.1126/science.1214143
2015, A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nat. Commun., 6, 7638, 10.1038/ncomms8638
2017, Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy, Adv. Mater., 29, 1701144, 10.1002/adma.201701144
2018, Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet, Nat. Nanotech., 13, 1154, 10.1038/s41565-018-0255-3
2020, Electron beam lithography of magnetic skyrmions, Adv. Mater., 32, 2003003, 10.1002/adma.202003003
2015, Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack, J. Phys. D: Appl. Phys., 48, 115004, 10.1088/0022-3727/48/11/115004
2013, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol., 8, 839, 10.1038/nnano.2013.210
2019, Deterministic field-free skyrmion nucleation at a nanoengineered injector device, Nano Lett., 19, 7246, 10.1021/acs.nanolett.9b02840
2018, Current-induced skyrmion generation through morphological thermal transitions in chiral ferromagnetic heterostructures, Adv. Mater., 30, 1805461, 10.1002/adma.201805461
2017, Electric-field-driven switching of individual magnetic skyrmions, Nat. Nanotechnol., 12, 123, 10.1038/nnano.2016.234
2017, The skyrmion switch: Turning magnetic skyrmion bubbles on and off with an electric field, Nano Lett., 17, 3006, 10.1021/acs.nanolett.7b00328
2015, Perpendicular reading of single confined magnetic skyrmions, Nat. Commun., 6, 8541, 10.1038/ncomms9541
2015, Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance, Nat. Nanotechnol., 10, 1039, 10.1038/nnano.2015.218
2015, Topological spin Hall effect resulting from magnetic skyrmions, Phys. Rev. B, 92, 024411, 10.1103/physrevb.92.024411
2017, Room-temperature skyrmion shift device for memory application, Nano Lett., 17, 261, 10.1021/acs.nanolett.6b04010
2017, Room-temperature current-induced generation and motion of sub-100 nm skyrmions, Nano Lett., 17, 2703, 10.1021/acs.nanolett.7b00649
2016, Magnetic bilayer-skyrmions without skyrmion Hall effect, Nat. Commun., 7, 10293, 10.1038/ncomms10293
2020, Realization of isolated and high-density skyrmions at room temperature in uncompensated synthetic antiferromagnets, Nano Lett., 20, 3299, 10.1021/acs.nanolett.0c00116
2016, Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature, Phys. Rev. Lett., 116, 147203, 10.1103/physrevlett.116.147203
2016, Antiferromagnetic skyrmion: Stability, creation and manipulation, Sci. Rep., 6, 24795, 10.1038/srep24795
2020, Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets, Nat. Mater., 19, 34, 10.1038/s41563-019-0468-3
2018, Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films, Nat. Commun., 9, 959, 10.1038/s41467-018-03378-7
2017, Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy, Nanoscale, 9, 10212, 10.1039/c7nr01980g
2017, An improved racetrack structure for transporting a skyrmion, Sci. Rep., 7, 45330, 10.1038/srep45330
2015, Guided current-induced skyrmion motion in 1D potential well, Sci. Rep., 5, 10620, 10.1038/srep10620
2018, Asymmetric skyrmion Hall effect in systems with a hybrid Dzyaloshinskii-Moriya interaction, Phys. Rev. B, 97, 224427, 10.1103/physrevb.97.224427
2010, Dynamic notch pinning fields for domain walls in ferromagnetic nanowires, IEEE Trans. Magn., 46, 1559, 10.1109/tmag.2010.2041044
2020, Robust skyrmion shift device through engineering the local exchange-bias field, Phys. Rev. Appl., 14, 044008, 10.1103/physrevapplied.14.044008
2015, Capturing of a magnetic skyrmion with a hole, Phys. Rev. B, 91, 054410, 10.1103/physrevb.91.054410
2016, Voltage controlled magnetic skyrmion motion for racetrack memory, Sci. Rep., 6, 23164, 10.1038/srep23164
2016, Spin-transfer torque memories: Devices, circuits, and systems, Proc. IEEE, 104, 1449, 10.1109/jproc.2016.2521712
2017, Review of physics-based compact models for emerging nonvolatile memories, J. Comput. Electron., 16, 1257, 10.1007/s10825-017-1098-0
2018, Skyrmions in magnetic tunnel junctions, ACS Appl. Mater. Interfaces, 10, 16887, 10.1021/acsami.8b03812
2020, Thermally assisted skyrmion memory (TA-SKM), IEEE Electron Device Lett., 41, 932, 10.1109/led.2020.2986312
2018, Strain-mediated voltage-controlled switching of magnetic skyrmions in nanostructures, npj Comput. Mater., 4, 62, 10.1038/s41524-018-0119-2
2020, Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure, Nat. Commun., 11, 3577, 10.1038/s41467-020-17354-7
1971, Memristor: The missing circuit element, IEEE Trans. Circuit Theory, 18, 507, 10.1109/tct.1971.1083337
2019, A spin–orbit-torque memristive device, Adv. Electron. Mater., 5, 1800782, 10.1002/aelm.201800782
2017, Magnetic skyrmion-based synaptic devices, Nanotechnology, 28, 08LT02, 10.1088/1361-6528/aa5838
2020, Skyrmion-based artificial synapses for neuromorphic computing, Nat. Electron., 3, 148, 10.1038/s41928-020-0385-0
2019, Voltage-controlled skyrmion memristor for energy-efficient synapse applications, IEEE Electron Device Lett., 40, 635, 10.1109/led.2019.2898275
2015, Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions, Sci. Rep., 5, 9400, 10.1038/srep09400
2016, Skyrmion domain wall collision and domain wall-gated skyrmion logic, Phys. Rev. B, 94, 054408, 10.1103/physrevb.94.054408
2017, Current induced dynamics of multiple skyrmions with domain wall pair and skyrmion-based majority gate design, IEEE Mag. Lett., 8, 4305705, 10.1109/lmag.2017.2689721
2019, Skyrmion logic system for large-scale reversible computation, Phys. Rev. Appl., 12, 064053, 10.1103/physrevapplied.12.064053
2019, SkyLogic—A proposal for a skyrmion-based logic device, IEEE Trans. Electron Devices, 66, 1990, 10.1109/ted.2019.2899263
2019, Skyrmion-based ultra-low power electric-field-controlled reconfigurable (SUPER) logic gate, IEEE Electron Device Lett., 40, 1984, 10.1109/led.2019.2946863
2020, Skyrmion latch and flip-flop in magnetic nanotracks with gradient anisotropy, J. Magn. Magn. Mater., 494, 165739, 10.1016/j.jmmm.2019.165739