Chuyển hóa ATP trong cơ vân và hàm lượng ATP cũng như PCr của sợi đơn trong quá trình tập luyện cường độ cao ở các nhiệt độ khác nhau của cơ ở người

Pflügers Archiv - Tập 462 - Trang 885-893 - 2011
Stuart R. Gray1, Karin Soderlund2, Moira Watson3, Richard A. Ferguson4
1Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
2Swedish School of Sport and Health Sciences, Stockholm, Sweden
3Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
4School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK

Tóm tắt

Nghiên cứu đã khảo sát tác động của nhiệt độ lên chuyển hóa ATP trong cơ vân, lượng oxy hấp thu qua phổi và hàm lượng ATP cũng như PCr của sợi đơn trong quá trình tập luyện xe đạp cường độ cao. Sáu đối tượng nam khỏe mạnh đã thực hiện bài tập xe đạp cường độ cao trong 6 phút (Δ50%LT-VO2peak), ở tốc độ 60 vòng/phút, dưới điều kiện nhiệt độ cơ bình thường (N) và tăng cao (ET). Các mẫu sinh thiết cơ được lấy từ cơ vastus lateralis ở trạng thái nghỉ, sau 2 và 6 phút đã được phân tích cho ATP, PCr, lactate và glycogen, cho phép ước lượng chuyển hóa ATP kỵ khí. Các sợi đơn được sấy đông từ các mẫu sinh thiết đã được xác định theo thành phần chuỗi nặng myosin (type I, IIA hoặc IIAX) và phân tích hàm lượng ATP và PCr. Trao đổi khí ở phổi được đo trong suốt quá trình thử nghiệm. Không có sự khác biệt về lượng oxy hấp thu qua phổi giữa các thử nghiệm. Việc tăng nhiệt độ cơ dẫn đến hàm lượng PCr thấp hơn (P < 0.05), hàm lượng lactate cao hơn (P < 0.05) và chuyển hóa ATP kỵ khí lớn hơn (P < 0.05) sau 2 phút tập luyện. Không có tác động của nhiệt độ lên các chỉ số này sau 6 phút. Ở các sợi đơn, quan sát cho thấy ở ET, hàm lượng PCr ở sợi loại I thấp hơn (P < 0.05) sau 2 phút mà không có sự khác biệt giữa các điều kiện sau 6 phút. Nghiên cứu hiện tại chứng minh rằng việc tăng nhiệt độ cơ dẫn đến sự chuyển hóa ATP kỵ khí lớn hơn và sự phân hủy PCr của sợi loại I trong 2 phút đầu của bài tập cường độ cao.

Từ khóa

#chuyển hóa ATP #cơ vân #nhiệt độ cơ #tập luyện cường độ cao #sợi đơn #PCr

Tài liệu tham khảo

Asmussen E, Boje O (1945) Body temperature and the capacity for work. Acta Physiol Scand 10:1–22 Bangsbo J, Gollink PD, Graham TE, Juel C, Kiens B, Mizuno M, Saltin B (1990) Anaerobic energy production and O2 deficit–debt relationship during exhaustive exercise in humans. J Physiol 422:539–559 Beaver WL, Wasserman K, Whipp BJ (1985) Improved detection of lactate threshold during exercise using a log–log transformation. J Appl Physiol 59:1936–1940 Bell MP, Ferguson RA (2009) Interaction between muscle temperature and contraction velocity affects mechanical efficiency during moderate-intensity cycling exercise in young and older women. Journal of Applied Physiology 107:763–769 Beltman JG, de Haan A, Haan H, Gerrits HL, van Mechelen W, Sargeant AJ (2004) Metabolically assessed muscle fibre recruitment in brief isometric contractions at different intensities. Eur J Appl Physiol 92:485–492 Beltman JG, Sargeant AJ, Haan H, van Mechelen W, de Haan A (2004) Changes in PCr/Cr ratio on single characterized muscle fibre fragments after only a few maximal voluntary contractions in humans. Acta Physiol Scand 180:187–193 Bennett AF (1984) Thermal dependence of muscle function. Am J Physiol 247:R217–R229 Bergstrom J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest suppl 68:1–101 Burnley M, Doust JH, Ball D, Jones AM (2002) Effects of prior heavy exercise on Vo2 kinetics during heavy exercise are related to changes in muscle activity. J Appl Physiol 93:167–174 Burnley M, Doust JH, Jones AM (2002) Effects of prior heavy exercise, prior sprint exercise and passive warming on oxygen uptake kinetics during heavy exercise in humans. Eur J Appl Physiol 87:424–432 Conjard A, Pette D (1999) Phosphocreatine as a marker of contractile activity in single muscle fibres. Pflugers Archiv 438:278–282 di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respiration Physiology 118:103–115 Edwards RHT, Harris RC, Hultman E, Kaijser L, Koh D, Nordesjo L-O (1972) Effect of temperature on muscle energy metabolism and endurance during successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man. J Physiol 220:335–352 Fauteck SP, Kandarian SC (1995) Sensitive detection of myosin heavy chain composition in skeletal muscle under different loading conditions. Am J Physiol 268:C419–C424 Febbraio MA (2000) Does muscle function and metabolism affect exercise performance in the heat? Exerc Sport Sci Rev 28:171–176 Febbraio MA, Carey MF, Snow RJ, Stathis CG, Hargreaves M (1996) Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am J Physiol 271:1251–1255 Fenn WO (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol 58:175–203 Ferguson RA, Ball D, Sargeant AJ (2002) Effect of muscle temperature on rate of oxygen uptake during exercise in humans at different contraction frequencies. J Exp Biol 205:981–987 Ferguson RA, Krustrup P, Kjaer M, Mohr M, Ball D, Bangsbo J (2006) Effect of temperature on skeletal muscle energy turnover during dynamic knee-extensor exercise in humans. J Appl Physiol 101:47–52 Gladden LB (2000) Muscle as a consumer of lactate. Med Sci Sports Exerc 32:764–771 Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30 Gollnick PD, Armstrong RB, Saubert CW, Piehl K, Saltin B (1972) Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. Journal of Applied Physiology 33:312–319 Gray SR, De Vito G, Nimmo MA, Farina D, Ferguson RA (2006) Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. Am J Physiol 290:R376–R382 Gray SR, Soderlund K, Ferguson RA (2008) ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures. J Sports Sci 26:701–707 Greenhaff PL, Nevill AM, Söderlund K, Bodin K, Boobis LH, Williams C, Hultman E (1994) The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol 478:149–155 Harris RC, Hultman E, Nordesjö L-O (1974) Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33:109–120 He Z-H, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C (2000) ATP consumption and efficiency of human single muscle fibres with different myosin isoform composition. Biophysical Journal 79:945–961 Infante AA, Klaupiks D, Davies RE (1965) Phosphorylcreatine consumption during single-working contractions of isolated muscle. Biochim Biophys Acta 94:504–515 Jones. AM (1998) A five year physiological case study of an olympic runner. Br J Sp Med 32:39–43 Karatzaferi C, Chinn MK, Cooke R (2004) The force exerted by a muscle cross-bridge depends directly on the strength of the actomyosin bond. Biophysical Journal 87:2532–2544 Koga S, Shiojiri T, Kondo N, Barstow TJ (1997) Effect of increased muscle temperature on oxygen uptake kinetics during exercise. J Appl Physiol 83:1333–1338 Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472:595–614 Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic, New York Medbo JI, Tabata I (1993) Anaerobic energy release in working muscle during 30s to 3 min of exhausting bicycling. J Appl Physiol 75:1654–1660 Oakley BR, Kirsch DR, Morris NR (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry 105(1):361–363 Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJF (1999) Regulation of skeletal muscle glycogen phoshorylase and PDH during maximal intermittent exercise. Am J Physiol 277:E890–E900 Rall JA, Woledge RC (1990) Influence of temperature on mechanics and energetics of muscle contraction. Am J Physiol 259:197–203 Ranatunga KW (1984) The force–velocity relation of rat fast- and slow-twitch muscles examined at different temperatures. J Physiol 351:517–529 Saltin B, Gagge AP, Stolwijk JAJ (1968) Muscle temperature during submaximal exercise in man. J Appl Physiol 25:679–688 Sargeant AJ, Jones DA (1995) The significance of motor unit variability in sustaining mechanical output of muscle. In: Gandevia SC, Enoka RM, McComas AJ, Stuart DG, Thomas CK (eds) Fatigue: neural and muscular mechanisms. Plenum, New York, pp 323–338 Sargeant AJ, Rademaker A (1996) Human muscle power in the locomotory range of contraction velocities increases with temperature due to an increase in power generated by type I fibres. J Physiol 491:128P Spriet LL (1995) Anaerobic metabolism during high-intensity exercise. In: Hargreaves M (ed) Exercise metabolism. Human Kinetics, Illinois, pp 1–40 Spriet LL, Söderlund K, Bergstrom M, Hultman E (1987) Anaerobic energy release in skeletal muscle during electrical stimulation in men. J Appl Physiol 62:611–615 Starkie RL, Hargreaves M, Lambert DL, Proietto J, Febbraio MA (1999) Effect of temperature on muscle metabolism during submaximal exercise in humans. Exp Physiol 84:775–784 Steinen GJM, Kiers JL, Bottinelli R, Reggiani C (1996) Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre types and temperature dependence. J Physiol 493:299–307 Wibom R, Söderlund K, Lundin A, Hultman E (1991) A luminometric method for the determination of ATP and phosphocreatine in single human skeletal muscle fibres. J Biolumin and Chemilumin 6:123–129 Wyss M, Schlegel J, James P, Eppenberger HM, Wallimann T (1990) Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization, and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes. J Biol Chem 265:15900–15908