Sirtuins at the crossroads of stemness, aging, and cancer

Aging Cell - Tập 16 Số 6 - Trang 1208-1218 - 2017
C. O'Callaghan1, Athanassios Vassilopoulos1,2
1Laboratory for Molecular Cancer Biology, Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
2Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA

Tóm tắt

SummarySirtuins are stress‐responsive proteins that direct various post‐translational modifications (PTMs) and as a result, are considered to be master regulators of several cellular processes. They are known to both extend lifespan and regulate spontaneous tumor development. As both aging and cancer are associated with altered stem cell function, the possibility that the involvement of sirtuins in these events is mediated by their roles in stem cells is worthy of investigation. Research to date suggests that the individual sirtuin family members can differentially regulate embryonic, hematopoietic as well as other adult stem cells in a tissue‐ and cell type‐specific context. Sirtuin‐driven regulation of both cell differentiation and signaling pathways previously involved in stem cell maintenance has been described where downstream effectors involved determine the biological outcome. Similarly, diverse roles have been reported in cancer stem cells (CSCs), depending on the tissue of origin. This review highlights the current knowledge which places sirtuins at the intersection of stem cells, aging, and cancer. By outlining the plethora of stem cell‐related roles for individual sirtuins in various contexts, our purpose was to provide an indication of their significance in relation to cancer and aging, as well as to generate a clearer picture of their therapeutic potential. Finally, we propose future directions which will contribute to the better understanding of sirtuins, thereby further unraveling the full repertoire of sirtuin functions in both normal stem cells and CSCs.

Từ khóa


Tài liệu tham khảo

10.1126/science.1098014

10.1093/carcin/23.5.817

10.1016/j.celrep.2013.01.005

10.1016/j.ceb.2016.12.009

10.1038/nature10296

10.1038/onc.2011.612

10.1073/pnas.1001399107

10.1016/j.stem.2012.04.002

10.1371/journal.pbio.0050201

10.1016/j.cell.2013.05.027

10.1016/j.bbrc.2009.01.040

10.1002/hep.26278

10.1186/1476-4598-13-254

10.1038/srep07481

10.1073/pnas.1934713100

10.1126/science.1175371

10.1038/nrm3841

10.1038/ncomms4557

10.1038/srep22622

10.1016/j.canlet.2014.08.007

10.1126/science.1207861

10.1158/1940-6207.CAPR-12-0034

10.1016/j.stem.2008.03.021

10.1182/blood-2007-01-069807

10.1038/ncb3147

10.1007/s11626-016-0070-9

10.1006/bbrc.2000.3000

10.1016/S1097-2765(03)00226-0

10.1038/srep00150

10.1074/jbc.M110.202390

10.1038/nature09917

10.1101/gad.227439.113

10.1101/gad.1467506

10.1016/j.cell.2006.06.057

10.1016/j.stem.2008.01.002

10.1016/j.molcel.2012.10.024

10.1158/0008-5472.CAN-05-3617

10.4161/cc.10.13.16185

10.1073/pnas.0800612105

10.1073/pnas.0911325107

10.1038/nrm3293

10.1007/s10571-014-0071-8

10.4155/fmc.14.44

10.1073/pnas.91.15.7036

10.1158/0008-5472.CAN-08-2807

10.1016/j.cell.2016.05.044

10.1016/j.celrep.2017.01.065

10.1074/jbc.M114.561803

10.1038/nature12038

10.1186/s12885-015-1282-1

10.1016/j.cmet.2007.07.003

10.1038/nature10815

10.1038/nm.4001

10.1016/j.molcel.2006.06.026

10.1016/j.ccr.2011.09.004

10.1073/pnas.0409875102

10.1146/annurev-biochem-060614-033955

10.18632/oncotarget.3278

10.1038/onc.2008.436

10.1371/journal.pone.0045633

10.1093/neuonc/nou145

10.1182/blood-2011-09-377077

10.1016/j.ccr.2011.12.020

10.1016/j.stem.2014.08.001

10.1016/j.molcel.2010.05.023

10.1074/jbc.M413296200

10.1002/hep.28690

10.1128/MCB.01636-07

10.1016/j.tips.2009.11.004

10.18632/oncotarget.3394

Mai V, 2003, Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms, Cancer Res., 63, 1752

10.1038/srep09841

10.1016/j.cell.2008.03.027

10.1097/MD.0000000000004765

10.1016/j.bbrc.2012.01.109

10.1111/exd.12323

10.1038/bjc.2015.226

10.1126/science.aaa2361

10.1093/gerona/glu049

10.1016/j.cell.2005.11.044

10.1016/j.molcel.2011.04.020

10.1158/1541-7786.MCR-14-0223-T

10.1016/j.cell.2016.06.028

10.1038/sj.onc.1209049

10.1182/blood-2010-03-273011

10.1128/MCB.01337-13

10.1016/j.molcel.2013.06.001

10.1111/ejn.12249

10.1186/s13058-016-0712-6

10.1073/pnas.0809620106

10.1038/srep03022

10.1038/nature02583

10.1038/ncb1700

10.1371/journal.pgen.0020040

10.1016/j.stemcr.2014.04.015

10.1021/jm301115r

10.1021/jm3011614

10.18632/aging.100176

10.1007/s12015-013-9465-0

10.1371/journal.pone.0076699

10.1016/j.celrep.2013.03.019

10.1371/journal.pone.0098861

10.1084/jem.20121608

10.1093/jnci/djt118

10.1242/jcs.127381

10.1016/j.stem.2014.03.002

10.1016/j.ccell.2014.10.021

10.1038/35065638

10.1186/s12943-017-0596-9

10.1007/s11357-013-9597-9

10.1161/CIRCRESAHA.107.164558

10.1186/1479-7364-5-5-485

10.1089/ars.2013.5420

10.1038/ncomms6659

10.1016/j.tcb.2013.09.002

10.1016/j.devcel.2005.09.017

10.1016/j.cell.2015.03.032

10.1093/toxsci/52.suppl_1.35

10.1042/BJ20101293

Wang L, 2015, SIRT3 inhibits cell proliferation in human gastric cancer through down‐regulation of Notch‐1, Int. J. Clin. Exp. Med., 8, 5263

10.1016/j.stem.2016.03.005

Xu J, 2013, Up‐regulation of MBD1 promotes pancreatic cancer cell epithelial‐mesenchymal transition and invasion by epigenetic down‐regulation of E‐cadherin, Curr. Mol. Med., 13, 387

10.1016/j.cell.2016.10.016

10.1038/nature14897

10.1158/1078-0432.CCR-13-2952

10.1038/cdd.2014.206

10.1007/978-1-4614-5915-6_2

Zhang J, 2015, The histone deacetylase SIRT6 inhibits ovarian cancer cell proliferation via down‐regulation of Notch 3 expression, Eur. Rev. Med. Pharmacol. Sci., 19, 818

10.1172/JCI76611

10.1016/j.cell.2009.12.041

10.1186/s13578-015-0055-5

10.1016/j.celrep.2016.10.006

10.18632/oncotarget.12774