Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells

Weijin Zhang1,2, Qiaobing Huang2, Zhenhua Zeng1,2, Jie Wu1,2, Yaoyuan Zhang1, Zhongqing Chen1,2
1Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
2Guangdong Key Lab of Shock and Microcirculation Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China

Tóm tắt

The vascular endothelium is a layer of cells lining the inner surface of vessels, serving as a barrier that mediates microenvironment homeostasis. Deterioration of either the structure or function of endothelial cells (ECs) results in a variety of cardiovascular diseases. Previous studies have shown that reactive oxygen species (ROS) is a key factor that contributes to the impairment of ECs and the subsequent endothelial dysfunction. The longevity regulator Sirt1 is a NAD+‐dependent deacetylase that has a potential antioxidative stress activity in vascular ECs. The mechanisms underlying the protective effects involve Sirt1/FOXOs, Sirt1/NF‐κB, Sirt1/NOX, Sirt1/SOD, and Sirt1/eNOs pathways. In this review, we summarize the most recent reports in this field to recapitulate the potent mechanisms involving the protective role of Sirt1 in oxidative stress and to highlight the beneficial effects of Sirt1 on cardiovascular functions.

Từ khóa


Tài liệu tham khảo

10.1152/physrev.00012.2005

Iantorno M., 2014, Obesity, inflammation and endothelial dysfunction, Journal of Biological Regulators and Homeostatic Agents, 28, 169

10.1161/CIRCRESAHA.111.261388

10.1161/01.RES.0000267723.65696.4a

10.1161/01.RES.0000269183.13937.e8

10.1152/japplphysiol.91232.2008

10.1165/rcmb.2005-0482OC

10.1016/j.cell.2008.10.025

10.1016/j.phrs.2009.12.006

10.1124/jpet.111.183210

10.1038/15458

10.1016/S0378-1119(01)00741-7

10.1006/bbrc.2000.3000

10.1007/s10822-006-9084-9

10.1155/2016/7589813

10.1371/journal.pone.0169142

10.1152/ajpheart.00375.2009

10.1152/ajpheart.00368.2009

10.1517/14728222.2015.1054806

10.1155/2015/965961

10.1155/2016/1737185

10.1371/journal.pone.0115300

10.1007/s12265-012-9436-x

10.1002/mnfr.201500144

10.1038/nature06261

10.1097/MCO.0b013e32832cdaae

10.1016/j.tcm.2013.07.001

10.1016/j.pbiomolbio.2016.02.003

10.1073/pnas.1934713100

10.1073/pnas.1003833107

10.1139/Y08-099

10.1038/nature06394

10.1038/35001622

10.1016/j.yjmcc.2007.08.008

10.1161/CIRCRESAHA.109.215483

10.1016/j.tcm.2013.01.001

10.1016/j.celrep.2015.02.036

10.1073/pnas.0712145105

10.1038/nm1574

10.1083/jcb.200412022

10.1016/j.mam.2005.07.006

10.1016/j.freeradbiomed.2007.09.023

10.1101/gad.14.2.142

10.1038/nature01036

10.1016/j.cmet.2010.01.001

10.1371/journal.pone.0073875

10.1126/science.1094637

10.1073/pnas.0400593101

10.1074/jbc.M401138200

10.1126/science.1101731

10.1074/jbc.M110.163667

10.1038/cddis.2015.380

10.1371/journal.pone.0054514

10.1161/CIRCULATIONAHA.109.864629

10.1111/j.1474-9726.2009.00453.x

10.1016/j.freeradbiomed.2013.06.020

10.1016/j.aquatox.2016.09.012

10.1016/j.yexcr.2016.09.002

10.2337/db11-0416

10.1016/j.mad.2009.06.004

10.1016/j.cellsig.2013.06.007

10.1152/physrev.00044.2005

10.1016/j.cell.2006.05.035

10.1126/stke.2332004pe21

10.1089/ars.2009.2392

10.1016/j.bcp.2013.02.015

10.1021/np300841v

10.1371/journal.pone.0008414

10.1073/pnas.1003833107

10.1016/j.metabol.2013.12.011

10.1111/acel.12461

10.1007/s11427-012-4329-4

10.3389/fphys.2013.00347

10.1093/eurheartj/ehr304

10.1038/nature09599

10.1073/pnas.0704329104

10.1093/gerona/glq113

10.1016/j.bbrc.2013.06.049

10.1248/bpb.b15-00012

10.1016/j.niox.2013.04.001

10.1248/bpb.b12-00598

10.3892/ijmm.2015.2444

10.1165/rcmb.2012-0440OC

10.1155/2016/1852340

10.1681/ASN.2013080838

10.1074/jbc.M115.713149