Singularity of Some Random Continued Fractions
Tóm tắt
We prove singularity of some distributions of random continued fractions that correspond to iterated function systems with overlap and a parabolic point. These arose while studying the conductance of Galton-Watson trees.
Tài liệu tham khảo
Bernadac, E. (1993). Fractions continues aléatoires sur un cone symétrique. C. R. Acad. Sci. Paris, I 316, 859-864.
Bernadac, E. (1995). Random continued fractions and inverse Gaussian distribution on a symmetric cone. J. Theoret. Probab. 8, 221-259.
Bhattacharya, R., and Goswami, A. (1998). A class of random continued fractions with singular equilibria, preprint.
Bougerol, P., and Lacroix, J. (1985). Products of Random Matrices with Applications to Schrödinger Operators, Birkhaüser, Boston.
Chamayou, J.-F., and Letac, G. (1991). Explicit stationary distributions for compositions of random functions and products of random matrices. J. Theoret. Probab. 4, 3-36.
Chassaing, P., Letac, G., and Mora, M. (1984). Brocot sequences and random walks in SL(2, R), in Probability Measures on Groups, VII (Oberwolfach, 1983), Lecture Notes in Math., Vol. 1064, pp. 36-48, Springer, Berlin.
Doyle, P. G., and Snell, J. L. (1984). Random Walks and Electric Networks, Mathematical Assoc. of America, Washington, DC.
Falconer, K. (1997). Techniques in Fractal Geometry, Wiley, Chichester.
Kaijser, T. (1983). A note on random continued fractions. In Probability and Mathematical Statistics, Uppsala University, Uppsala, pp. 74-84.
Kinney, J. R., and Pitcher, T. S. (1965/1966). The dimension of some sets defined in terms of f-expansions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4, 293-315.
Letac, G. (1986). A contraction principle for certain Markov chains and its applications. In Random Matrices and Their Applications (Brunswick, Maine, 1984), Contemp. Math., Vol. 50, pp. 263-273, Amer. Math. Soc., Providence, R.I.
Letac, G., and Seshadri, V. (1995). A random continued fraction in Rd+1 with an inverse Gaussian distribution. Bernoulli 1, 381-393.
Lyons, R., Pemantle, R., and Peres, Y. (1995). Ergodic theory on Galton-Watson trees: Speed of random walk and dimension of harmonic measure. Ergodic Theory Dynamical Systems 15, 593-619.
Lyons, R., Pemantle, R., and Peres, Y. (1997). Unsolved problems concerning random walks on trees. In Athreya, A., and Jagers P. (eds), Classical and Modern Branching Processes, Springer, New York, pp. 223-238.
Lyons, R., and Peres, Y. (1998). Probability on Trees and Networks, Cambridge University Press, in preparation. Current version available at http://php.indiana.edu/∼trdlyons/.
Peres, Y., and Solomyak, B. (1996). Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3, 231-239.
Pincus, S. (1983). A class of Bernoulli random matrices with continuous singular stationary measures. Ann. Probab. 11, 931-938.
Pincus, S. (1985). Strong laws of large numbers for products of random matrices. Trans. Amer. Math. Soc. 287, 65-89.
Pincus, S. (1994). Singular stationary measures are not always fractal. J. Theoret. Probab. 7, 199-208.
Pitcher, T., and Foster, S. (1974). Convergence properties of random T-fractions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29, 323-330.
Simon, K. Solomyak, B., and Urbañski, M. (1998). Parabolic iterated function systems with overlaps and random continued fractions, preprint.
Solomyak, B. (1995). On the random series ∑ ± λn (an Erdös problem). Ann. of Math. (2) 142, 611-625.
Urbañski, M. (1996). Parabolic Cantor sets. Fund. Math. 151, 241-277.