Sản xuất đơn lẻ các quark kiểu vectơ: ảnh hưởng của độ rộng lớn, giao thoa và các hiệu chỉnh NLO

Journal of High Energy Physics - Tập 2021 - Trang 1-63 - 2021
Aldo Deandrea1, Thomas Flacke2, Benjamin Fuks3,4, Luca Panizzi5,6, Hua-Sheng Shao3
1Univ. Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I UMR5822, Villeurbanne, France
2Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon, Korea
3Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Université et CNRS, Paris Cedex 05, France
4Institut Universitaire de France, Paris, France
5Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
6School of Physics and Astronomy, University of Southampton, Southampton, U.K.

Tóm tắt

Chúng tôi cung cấp một cuộc thảo luận toàn diện, cùng với thiết lập hoàn chỉnh cho các mô phỏng, liên quan đến việc sản xuất một quark kiểu vectơ đơn lẻ tại các máy dò hadron. Dự đoán của chúng tôi bao gồm các hiệu ứng độ rộng hữu hạn, hiệu ứng giao thoa giữa tín hiệu và nền và các hiệu chỉnh QCD ở bậc tiếp theo. Chúng tôi áp dụng một cách rõ ràng khung lý thuyết để nghiên cứu sự sản xuất đơn lẻ của một quark kiểu vectơ T với điện tích 2/3, nhưng cùng quy trình này có thể được sử dụng để phân tích sự sản xuất đơn lẻ của các quark kiểu vectơ với điện tích −4/3, −1/3, 2/3 và 5/3, khi quark kiểu vectơ tương tác với các quark của Mô hình Chuẩn và các boson điện yếu. Hơn nữa, quy trình này có thể được mở rộng một cách trực tiếp để bao gồm các tương tác bổ sung với các hạt kỳ lạ. Chúng tôi cung cấp các kết quả định lượng cho các kịch bản chuẩn mực điển hình được đặc trưng bởi khối lượng và độ rộng của quark T, và chúng tôi xác định vai trò của các tham số giao thoa cho một loạt các khối lượng và độ rộng có ý nghĩa hiện tượng. Chúng tôi cũng mô tả một cách chi tiết, cả phân tích và số học, một đặc điểm nổi bật trong phân bố khối lượng bất biến xuất hiện chỉ trong kênh T → th.

Từ khóa

#quark kiểu vectơ #sản xuất đơn lẻ #hiệu ứng giao thoa #hiệu chỉnh NLO #QCD

Tài liệu tham khảo

D.B. Kaplan and H. Georgi, SU(2) × U (1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE]. D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE]. K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE]. L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [INSPIRE]. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE]. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire and J.G. Wacker, The Minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE]. M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE]. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE]. D.E. Lopez-Fogliani and C. Muñoz, Proposal for a Supersymmetric Standard Model, Phys. Rev. Lett. 97 (2006) 041801 [hep-ph/0508297] [INSPIRE]. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE]. M. Abdullah and J.L. Feng, Reviving bino dark matter with vectorlike fourth generation particles, Phys. Rev. D 93 (2016) 015006 [arXiv:1510.06089] [INSPIRE]. M. Abdullah, J.L. Feng, S. Iwamoto and B. Lillard, Heavy bino dark matter and collider signals in the MSSM with vectorlike fourth-generation particles, Phys. Rev. D 94 (2016) 095018 [arXiv:1608.00283] [INSPIRE]. J.A. Aguilar-Saavedra, D.E. López-Fogliani and C. Muñoz, Novel signatures for vector-like quarks, JHEP 06 (2017) 095 [arXiv:1705.02526] [INSPIRE]. J.Y. Araz, S. Banerjee, M. Frank, B. Fuks and A. Goudelis, Dark matter and collider signals in an MSSM extension with vector-like multiplets, Phys. Rev. D 98 (2018) 115009 [arXiv:1810.07224] [INSPIRE]. S. Zheng, Minimal Vectorlike Model in Supersymmetric Unification, Eur. Phys. J. C 80 (2020) 273 [arXiv:1904.10145] [INSPIRE]. J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE]. G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE]. J. Erdmenger, N. Evans, W. Porod and K.S. Rigatos, Gauge/gravity dual dynamics for the strongly coupled sector of composite Higgs models, JHEP 02 (2021) 058 [arXiv:2010.10279] [INSPIRE]. S. Moretti, D. O’Brien, L. Panizzi and H. Prager, Production of extra quarks at the Large Hadron Collider beyond the Narrow Width Approximation, Phys. Rev. D 96 (2017) 075035 [arXiv:1603.09237] [INSPIRE]. A. Carvalho, S. Moretti, D. O’Brien, L. Panizzi and H. Prager, Single production of vectorlike quarks with large width at the Large Hadron Collider, Phys. Rev. D 98 (2018) 015029 [arXiv:1805.06402] [INSPIRE]. J. Serra, Beyond the Minimal Top Partner Decay, JHEP 09 (2015) 176 [arXiv:1506.05110] [INSPIRE]. M. Chala, Direct bounds on heavy toplike quarks with standard and exotic decays, Phys. Rev. D 96 (2017) 015028 [arXiv:1705.03013] [INSPIRE]. N. Bizot, G. Cacciapaglia and T. Flacke, Common exotic decays of top partners, JHEP 06 (2018) 065 [arXiv:1803.00021] [INSPIRE]. H. Han, L. Huang, T. Ma, J. Shu, T.M.P. Tait and Y. Wu, Six Top Messages of New Physics at the LHC, JHEP 10 (2019) 008 [arXiv:1812.11286] [INSPIRE]. K.-P. Xie, G. Cacciapaglia and T. Flacke, Exotic decays of top partners with charge 5/3: bounds and opportunities, JHEP 10 (2019) 134 [arXiv:1907.05894] [INSPIRE]. R. Benbrik et al., Signatures of vector-like top partners decaying into new neutral scalar or pseudoscalar bosons, JHEP 05 (2020) 028 [arXiv:1907.05929] [INSPIRE]. G. Cacciapaglia, T. Flacke, M. Park and M. Zhang, Exotic decays of top partners: mind the search gap, Phys. Lett. B 798 (2019) 135015 [arXiv:1908.07524] [INSPIRE]. J.A. Aguilar-Saavedra, J. Alonso-González, L. Merlo and J.M. No, Exotic vectorlike quark phenomenology in the minimal linear σ model, Phys. Rev. D 101 (2020) 035015 [arXiv:1911.10202] [INSPIRE]. D. Wang, L. Wu and M. Zhang, Hunting for top partner with a new signature at the LHC, Phys. Rev. D 103 (2021) 115017 [arXiv:2007.09722] [INSPIRE]. ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying to high-pT W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2017) 141 [arXiv:1707.03347] [INSPIRE]. ATLAS collaboration, Search for pair production of vector-like top quarks in events with one lepton, jets, and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, JHEP 08 (2017) 052 [arXiv:1705.10751] [INSPIRE]. ATLAS collaboration, Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector, JHEP 07 (2018) 089 [arXiv:1803.09678] [INSPIRE]. ATLAS collaboration, Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 98 (2018) 112010 [arXiv:1806.10555] [INSPIRE]. ATLAS collaboration, Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 12 (2018) 039 [arXiv:1807.11883] [INSPIRE]. ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying into hadronic final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 092005 [arXiv:1808.01771] [INSPIRE]. ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third-generation quarks at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 211801 [arXiv:1808.02343] [INSPIRE]. CMS collaboration, Search for pair production of vector-like quarks in the bW\( \overline{\mathrm{b}} \)W channel from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 779 (2018) 82 [arXiv:1710.01539] [INSPIRE]. CMS collaboration, Search for vector-like quarks in events with two oppositely charged leptons and jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 364 [arXiv:1812.09768] [INSPIRE]. CMS collaboration, Search for vector-like T and B quark pairs in final states with leptons at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 177 [arXiv:1805.04758] [INSPIRE]. CMS collaboration, Search for pair production of vectorlike quarks in the fully hadronic final state, Phys. Rev. D 100 (2019) 072001 [arXiv:1906.11903] [INSPIRE]. CMS collaboration, Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2019) 082 [arXiv:1810.03188] [INSPIRE]. CMS collaboration, A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 102 (2020) 112004 [arXiv:2008.09835] [INSPIRE]. ATLAS collaboration, Search for single production of vector-like quarks decaying into Wb in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 05 (2019) 164 [arXiv:1812.07343] [INSPIRE]. CMS collaboration, Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 781 (2018) 574 [arXiv:1708.01062] [INSPIRE]. CMS collaboration, Search for single production of vector-like quarks decaying to a b quark and a Higgs boson, JHEP 06 (2018) 031 [arXiv:1802.01486] [INSPIRE]. CMS collaboration, Search for single production of vector-like quarks decaying to a top quark and a W boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 90 [arXiv:1809.08597] [INSPIRE]. CMS collaboration, Search for electroweak production of a vector-like T quark using fully hadronic final states, JHEP 01 (2020) 036 [arXiv:1909.04721] [INSPIRE]. O. Matsedonskyi, G. Panico and A. Wulzer, On the Interpretation of Top Partners Searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE]. CMS collaboration, Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process, in Community Summer Study 2013: Snowmass on the Mississippi, 7, 2013 [arXiv:1307.7135] [INSPIRE]. D. Barducci and L. Panizzi, Vector-like quarks coupling discrimination at the LHC and future hadron colliders, JHEP 12 (2017) 057 [arXiv:1710.02325] [INSPIRE]. X. Cid Vidal et al., Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 585 [arXiv:1812.07831] [INSPIRE]. B. Fuks and H.-S. Shao, QCD next-to-leading-order predictions matched to parton showers for vector-like quark models, Eur. Phys. J. C 77 (2017) 135 [arXiv:1610.04622] [INSPIRE]. G. Cacciapaglia et al., Next-to-leading-order predictions for single vector-like quark production at the LHC, Phys. Lett. B 793 (2019) 206 [arXiv:1811.05055] [INSPIRE]. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE]. N.D. Christensen et al., A Comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE]. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE]. C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE]. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+e− —> 4 fermions + gamma, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE]. A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e+e− → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. 854 (2012) 504] [hep-ph/0505042] [INSPIRE]. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, The automation of next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [arXiv:1804.10017] [INSPIRE]. D. Berdine, N. Kauer and D. Rainwater, Breakdown of the Narrow Width Approximation for New Physics, Phys. Rev. Lett. 99 (2007) 111601 [hep-ph/0703058] [INSPIRE]. D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy Dependent Width Effects in e+e− Annihilation Near the Z Boson Pole, Phys. Lett. B 206 (1988) 539 [INSPIRE]. C.-Y. Chen, S. Dawson and E. Furlan, Vectorlike fermions and Higgs effective field theory revisited, Phys. Rev. D 96 (2017) 015006 [arXiv:1703.06134] [INSPIRE]. G. Cacciapaglia, A. Deandrea, N. Gaur, D. Harada, Y. Okada and L. Panizzi, Interplay of vector-like top partner multiplets in a realistic mixing set-up, JHEP 09 (2015) 012 [arXiv:1502.00370] [INSPIRE]. G. Cacciapaglia, A. Deandrea, N. Gaur, D. Harada, Y. Okada and L. Panizzi, The LHC potential of Vector-like quark doublets, JHEP 11 (2018) 055 [arXiv:1806.01024] [INSPIRE]. N.D. Christensen et al., Simulating spin-\( \frac{3}{2} \) particles at colliders, Eur. Phys. J. C 73 (2013) 2580 [arXiv:1308.1668] [INSPIRE]. M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model Independent Framework for Searches of Top Partners, Nucl. Phys. B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE]. NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE]. P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE]. J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D.G. Öztürk and C.-H. Shen, Computing decay rates for new physics theories with FeynRules and MadGraph 5_aMC@NLO, Comput. Phys. Commun. 197 (2015) 312 [arXiv:1402.1178] [INSPIRE]. S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE]. G.L. Kane, W.W. Repko and W.B. Rolnick, The Effective W+-, Z0 Approximation for High-Energy Collisions, Phys. Lett. B 148 (1984) 367 [INSPIRE]. Z. Kunszt and D.E. Soper, On the Validity of the Effective W Approximation, Nucl. Phys. B 296 (1988) 253 [INSPIRE]. F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE]. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE]. E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE]. E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE]. J.Y. Araz, B. Fuks and G. Polykratis, Simplified fast detector simulation in MADANALYSIS 5, Eur. Phys. J. C 81 (2021) 329 [arXiv:2006.09387] [INSPIRE]. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE]. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE]. G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, A Dark Matter candidate from Lorentz Invariance in 6D, JHEP 03 (2010) 083 [arXiv:0907.4993] [INSPIRE]. G. Cacciapaglia, A. Deandrea, J. Ellis, J. Marrouche and L. Panizzi, LHC Missing-Transverse-Energy Constraints on Models with Universal Extra Dimensions, Phys. Rev. D 87 (2013) 075006 [arXiv:1302.4750] [INSPIRE]. J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE]. FeynRules NLO models, Vector like quarks section, http://feynrules.irmp.ucl.ac.be/wiki/NLOModels.