Single injection of very mild dose botulinum toxin in the vastus lateralis improves testicular spermatogenesis and sperm motility in ageing experimental mice

Springer Science and Business Media LLC - Tập 38 - Trang 1-11 - 2022
Risna Kanjirassery Radhakrishnan1, Sowbarnika Ravichandran1, Aishwarya Sukesh1, Balamuthu Kadalmani2, Mahesh Kandasamy1,2,3
1Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
2Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
3Faculty Recharge Programme, University Grants Commission(UGC-FRP), New Delhi, India

Tóm tắt

Botulinum toxin (BoNT) is a widely used therapeutic agent that blocks the excessive release of acetylcholine at the neuromuscular junction. Previously, repeated intracremasteric injections and slight overdose of BoNT have been reported to induce adverse effects in the testicular parameter of experimental rodents. However, a mild dose of BoNT is highly beneficial against skin ageing, neuromuscular deficits, overactive urinary bladder problems, testicular pain and erectile dysfunctions. Considering the facts, the possible therapeutic benefits of BoNT on the testis might be achieved at a very minimal dosage and via a distal route of action. Therefore, we revisited the effect of BoNT, but with a trace amount injected into the vastus lateralis of the thigh muscle, and analyzed histological parameters of the testis, levels of key antioxidants and sperm parameters in ageing experimental mice. Experimental animals injected with 1 U/kg bodyweight of BoNT showed enhanced spermatogenesis in association with increased activities of key antioxidants in the testis, leading to enhanced amount of the total sperm count and progressive motility. This study signifies that a mild intramuscular dose of BoNT can be considered as a potent treatment strategy to manage and prevent male infertility.

Tài liệu tham khảo

Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–29. Han X, Zhang C, Ma X, Yan X, Xiong B, Shen W, et al. Muscarinic acetylcholine receptor M5 is involved in spermatogenesis through the modification of cell–cell junctions. Reproduction. 2021;162(1):47–59. Schirmer SU, Eckhardt I, Lau H, Klein J, DeGraaf YC, Lips KS, et al. The cholinergic system in rat testis is of non-neuronal origin. Reproduction. 2011;142(1):157–66. Arıcan EY, Gökçeoğlu Kayalı D, Ulus Karaca B, Boran T, Öztürk N, Okyar A, et al. Reproductive effects of subchronic exposure to acetamiprid in male rats. Sci Rep. 2020;10(1):8985. da Silva Júnior ED, de Souza BP, Rodrigues JQD, Caricati-Neto A, Jurkiewicz A, Jurkiewicz NH. Functional characterization of acetylcholine receptors and calcium signaling in rat testicular capsule contraction. Eur J Pharmacol. 2013;714(1–3):405–13. Tata AM, Velluto L, D’Angelo C, Reale M. Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol Disord Drug Targets. 2014;13(7):1294–303. Zhu C, Palmada MN, Aguado LI, Cavicchia JC. Administration of acetylcholine to the spermatic nerve plexus inhibits testosterone secretion in an in vitro isolated rat testis-nerve plexus system. Int J Androl. 2002;25(3):134–8. Kandasamy M. Perspectives for the use of therapeutic Botulinum toxin as a multifaceted candidate drug to attenuate COVID-19. Med Drug Discov. 2020;6:100042. Nigam PK, Nigam A. Botulinum toxin. Indian J Dermatol. 2010;55(1):8–14. Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev. 2017;69(2):200–35. Yesudhas A, Radhakrishnan RK, Sukesh A, Ravichandran S, Manickam N, Kandasamy M. BOTOX® counteracts the innate anxiety-related behaviours in correlation with increased activities of key antioxidant enzymes in the hippocampus of ageing experimental mice. Biochem Biophys Res Commun. 2021;569:54–60. Breikaa RM, Mosli HA, Abdel-Naim AB. Influence of Onabotulinumtoxin A on testes of the growing rat. J Biochem Mol Toxicol. 2016;30(12):608–13. Breikaa RM, Mosli HA, Nagy AA, Abdel-Naim AB. Adverse testicular effects of Botox® in mature rats. Toxicol Appl Pharmacol. 2014;275(2):182–8. Ramelli E, Brault N, Tierny C, Atlan M, Cristofari S. Intrascrotal injection of botulinum toxin A, a male genital aesthetic demand: technique and limits. Prog Urol. 2020;30(6):312–7. Cousins E, Ward A, Roffe C, Rimington L, Pandyan A. Does low-dose botulinum toxin help the recovery of arm function when given early after stroke? A phase II randomized controlled pilot study to estimate effect size. Clin Rehabil. 2010;24(6):501–13. Padda IS, Tadi P. Botulinum toxin. Treasure Island: StatPearls Publishing; 2021. Wissel J, Heinen F, Schenkel A, Doll B, Ebersbach G, Müller J, et al. Botulinum toxin A in the management of spastic gait disorders in children and young adults with cerebral palsy: a randomized, double-blind study of “high-dose” versus “low-dose” treatment. Neuropediatrics. 1999;30:120–4. Ghanem H, Raheem AA, AbdelRahman IFS, Johnson M, Abdel-Raheem T. Botulinum neurotoxin and its potential role in the treatment of erectile dysfunction. Sex Med Rev. 2018;6(1):135–42. Raef HS, Elmariah SB. Treatment of male genital dysesthesia with botulinum toxin. JAAD Case Rep. 2021;10:60–2. Reddy AG, Dick BP, Natale C, Akula KP, Yousif A, Hellstrom WJG. Application of botulinum neurotoxin in male sexual dysfunction: where are we now? Sex Med Rev. 2021;9(2):320–30. Sekiguchi A, Motegi S-I, Uchiyama A, Uehara A, Fujiwara C, Yamazaki S, et al. Botulinum toxin B suppresses the pressure ulcer formation in cutaneous ischemia-reperfusion injury mouse model: possible regulation of oxidative and endoplasmic reticulum stress. J Dermatol Sci. 2018;90(2):144–53. Uchiyama A, Yamada K, Perera B, Ogino S, Yokoyama Y, Takeuchi Y, et al. Protective effect of botulinum toxin A after cutaneous ischemia-reperfusion injury. Sci Rep. 2015;5:9072. Yesudhas A, Roshan SA, Radhakrishnan RK, Abirami GPP, Manickam N, Selvaraj K, et al. Intramuscular injection of BOTOX® boosts learning and memory in adult mice in association with enriched circulation of platelets and enhanced density of pyramidal neurons in the hippocampus. Neurochem Res. 2020;45(12):2856–67. Kerr G. Safety of botulinum toxin a in cerebral palsy. Toxicon. 2008;51:28. de Jongh R, Bolt I, Schermer M, Olivier B. Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neurosci Biobehav Rev. 2008;32(4):760–76. Lewis MB, Bowler PJ. Botulinum toxin cosmetic therapy correlates with a more positive mood. J Cosmet Dermatol. 2009;8(1):24–6. Schweizer DF, Schweizer R, Zhang S, Kamat P, Contaldo C, Rieben R, et al. Botulinum toxin A and B raise blood flow and increase survival of critically ischemic skin flaps. J Surg Res. 2013;184(2):1205–13. Zhibo X, Miaobo Z. Botulinum toxin type A affects cell cycle distribution of fibroblasts derived from hypertrophic scar. J Plast Reconstr Aesthet Surg. 2008;61(9):1128–9. Gugerell A, Kober J, Schmid M, Nickl S, Kamolz LP, Keck M. Botulinum toxin A and lidocaine have an impact on adipose-derived stem cells, fibroblasts, and mature adipocytes in vitro. J Plast Reconstr Aesthet Surg. 2014;67(9):1276–81. Jeong HS, Lee BH, Sung HM, Park SY, Ahn DK, Jung MS, et al. Effect of botulinum toxin type A on differentiation of fibroblasts derived from scar tissue. Plast Reconstr Surg. 2015;136:171e-e178. Linn E, Ghanem L, Bhakta H, Greer C, Avella M. genes regulating spermatogenesis and sperm function associated with rare disorders. Front Cell Dev Biol. 2021;9:634536. O’Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis. 2015;4(2):e979623. Griswold MD. Spermatogenesis: the commitment to meiosis. Physiol Rev. 2016;96(1):1–17. Dadoune JP. The cellular biology of mammalian spermatids: a review. Bull Assoc Anat (Nancy). 1994;78(243):33–40. Berruti G, Paiardi C. Acrosome biogenesis: revisiting old questions to yield new insights. Spermatogenesis. 2011;1(2):95–8. Suphamungmee W, Wanichanon C, Vanichviriyakit R, Sobhon P. Spermiogenesis and chromatin condensation in the common tree shrew, Tupaia glis. Cell Tissue Res. 2008;331(3):687–99. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. Velusamy T, Panneerselvam AS, Purushottam M, Anusuyadevi M, Pal PK, Jain S, et al. Protective effect of antioxidants on neuronal dysfunction and plasticity in Huntington’s disease. Oxid Med Cell Longev. 2017;2017:3279061. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57:395–418. Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G. Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol (Lausanne). 2014;5:56. Selvaraj K, Manickam N, Kumaran E, Thangadurai K, Elumalai G, Sekar A, et al. Deterioration of neuroregenerative plasticity in association with testicular atrophy and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis in Huntington’s disease: a putative role of the huntingtin gene in steroidogenesis. J Steroid Biochem Mol Biol. 2020;197:105526. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28(1–2):1–10. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed. 2016;14(4):231–40. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17. Alahmar AT. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019;12(1):4–18. Weir CP, Robaire B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl. 2007;28(2):229–40. Mueller A, Hermo L, Robaire B. The effects of aging on the expression of glutathione S-transferases in the testis and epididymis of the Brown Norway rat. J Androl. 1998;19(4):450–65. Luo L, Chen H, Trush MA, Show MD, Anway MD, Zirkin BR. Aging and the brown Norway rat leydig cell antioxidant defense system. J Androl. 2006;27(2):240–7. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, et al. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol. 2018;16(1):87. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res. 2017;11(5):IE01-5. Selvaraj K, Ravichandran S, Krishnan S, Radhakrishnan RK, Manickam N, Kandasamy M. Testicular atrophy and hypothalamic pathology in COVID-19: possibility of the incidence of male infertility and HPG axis abnormalities. Reprod Sci. 2021;28(10):2735–42. Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod Biomed. 2016;14(12):729–36. Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol. 2018;16(1):113–24. Dini E, Mazzucchi S, De Luca C, Cafalli M, Chico L, Lo Gerfo A, et al. Plasma levels of oxidative stress markers, before and after BoNT/A treatment, in chronic migraine. Toxins (Basel). 2019;11(10):608. Zhou Y, Yu S, Zhao J, Feng X, Zhang M, Zhao Z. Effectiveness and safety of botulinum toxin type A in the treatment of androgenetic alopecia. Biomed Res Int. 2020;2020:1501893. Bray C, Son J-H, Meizel S. Acetylcholine causes an increase of intracellular calcium in human sperm. Mol Hum Reprod. 2005;11(12):881–9. Ngoula F, Watcho P, Dongmo M-C, Kenfack A, Kamtchouing P, Tchoumboué J. Effects of pirimiphos-methyl (an organophosphate insecticide) on the fertility of adult male rats. Afr Health Sci. 2007;7(1):3–9. Slimen S, Saloua EF, Najoua G. Oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of male adolescent mice after acute exposure. Iran J Basic Med Sci. 2014;17(7):522–30. Favaretto AL, Valença MM, Picanço-Diniz DL, Antunes-Rodrigues JA. Inhibitory role of cholinergic agonists on testosterone secretion by purified rat Leydig cells. Arch Int Physiol Biochim Biophys. 1993;101(6):333–5. Kasson BG, Hsueh AJ. Nicotinic cholinergic agonists inhibit androgen biosynthesis by cultured rat testicular cells. Endocrinology. 1985;117(5):1874–80. Satriyasa BK. Botulinum toxin (Botox) A for reducing the appearance of facial wrinkles: a literature review of clinical use and pharmacological aspect. Clin Cosmet Investig Dermatol. 2019;12:223–8. Kattimani V, Tiwari RVC, Gufran K, Wasan B, Shilpa PH, Khader AA. Botulinum toxin application in facial esthetics and recent treatment indications (2013–2018). J Int Soc Prev Community Dent. 2019;9(2):99–105. Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012;4(3):308–19. Yu Z, Liu J, Sun L, Wang Y, Meng H. Combination of botulinum toxin and minocycline ameliorates neuropathic pain through antioxidant stress and anti-inflammation via promoting SIRT1 pathway. Front Pharmacol. 2021;11:602417. Chiang BJ, Kuo HC, Liao CH. Can botulinum toxin A still have a role in treatment of lower urinary tract symptoms/benign prostatic hyperplasia through inhibition of chronic prostatic inflammation? Toxins (Basel). 2019;11(9):547. Kuo H-C. Botulinum toxin paves the way for the treatment of functional lower urinary tract dysfunction. Toxins (Basel). 2020;12(6):394. Kanimozhi V, Palanivel K, Kadalmani B, Krikun G, Taylor HS. Apolipoprotein E induction in syrian hamster testis following tributyltin exposure: a potential mechanism of male infertility. Reprod Sci. 2014;21(8):1006–14. Mehraein F, Negahdar F. Morphometric evaluation of seminiferous tubules in aged mice testes after melatonin administration. Cell J. 2011;13(1):1–4. Nakata H, Wakayama T, Takai Y, Iseki S. Quantitative analysis of the cellular composition in seminiferous tubules in normal and genetically modified infertile mice. J Histochem Cytochem. 2015;63(2):99–113. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.