Single fluorescent protein-based Ca2+sensors with increased dynamic range

Ekaterina A. Souslova1, Vsevolod V. Belousov1, John G. Lock2, Staffan Strömblad2, Sergey Kasparov3, A D Bolshakov4, V. G. Pinelis4, Yulii A. Labas5, Sergey Lukyanov1, Lorenz M. Mayr6, Dmitriy M. Chudakov1
1Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
2Karolinska Institutet, Department of Biosciences and Nutrition, Novum, SE-141 57, Huddinge, Sweden
3Department of Physiology School of Medical Sciences, University of Bristol, BS8 1TD, Bristol, UK
4Scientific Centre for Children's Health RAMS, Lomonosovskii pr. 61/2, Moscow, Russia
5Bakh Institute of Biochemistry, RAS, Leninsky 33, 117071, Moscow, Russia
6Novartis Pharma AG, NIBR/DT/LDC, Lichtstrasse 35, CH-4002, Basel, Switzerland

Tóm tắt

Abstract Background Genetically encoded sensors developed on the basis of green fluorescent protein (GFP)-like proteins are becoming more and more popular instruments for monitoring cellular analytes and enzyme activities in living cells and transgenic organisms. In particular, a number of Ca2+ sensors have been developed, either based on FRET (Fluorescence Resonance Energy Transfer) changes between two GFP-mutants or on the change in fluorescence intensity of a single circularly permuted fluorescent protein (cpFP). Results Here we report significant progress on the development of the latter type of Ca2+ sensors. Derived from the knowledge of previously reported cpFP-based sensors, we generated a set of cpFP-based indicators with different spectral properties and fluorescent responses to changes in Ca2+ concentration. Two variants, named Case12 and Case16, were characterized by particular high brightness and superior dynamic range, up to 12-fold and 16.5-fold increase in green fluorescence between Ca2+-free and Ca2+-saturated forms. We demonstrated the high potential of these sensors on various examples, including monitoring of Ca2+ response to a prolonged glutamate treatment in cortical neurons. Conclusion We believe that expanded dynamic range, high brightness and relatively high pH-stability should make Case12 and Case16 popular research tools both in scientific studies and high throughput screening assays.

Từ khóa


Tài liệu tham khảo

Griesbeck O: Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol. 2004, 14: 636-641. 10.1016/j.conb.2004.08.002.

Miyawaki A: Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell. 2003, 4: 295-305. 10.1016/S1534-5807(03)00060-1.

Chudakov DM, Lukyanov S, Lukyanov KA: Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 2005, 23: 605-613. 10.1016/j.tibtech.2005.10.005.

Pologruto TA, Yasuda R, Svoboda K: Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J Neurosci. 2004, 24: 9572-9579. 10.1523/JNEUROSCI.2854-04.2004.

Palmer AE, Tsien RY: Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc. 2006, 1: 1057-1065. 10.1038/nprot.2006.172.

Baird GS, Zacharias DA, Tsien RY: Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A. 1999, 96: 11241-11246. 10.1073/pnas.96.20.11241.

Nagai T, Sawano A, Park ES, Miyawaki A: Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A. 2001, 98: 3197-3202. 10.1073/pnas.051636098.

Nakai J, Ohkura M, Imoto K: A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol. 2001, 19: 137-141. 10.1038/84397.

Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY: Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem. 2001, 276: 29188-29194. 10.1074/jbc.M102815200.

Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S: Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods. 2006, 3: 281-286. 10.1038/nmeth866.

Kawai Y, Sato M, Umezawa Y: Single color fluorescent indicators of protein phosphorylation for multicolor imaging of intracellular signal flow dynamics. Anal Chem. 2004, 76: 6144-6149. 10.1021/ac040037s.

Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI: Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A. 2006, 103: 4753-4758. 10.1073/pnas.0509378103.

Patterson GH, Lippincott-Schwartz J: A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002, 297: 1873-1877. 10.1126/science.1074952.

Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA: Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol. 2004, 22: 1435-1439. 10.1038/nbt1025.

Yang F, Moss LG, Phillips GN: The molecular structure of green fluorescent protein. Nat Biotechnol. 1996, 14: 1246-1251. 10.1038/nbt1096-1246.

Pozzan T, Rizzuto R, Volpe P, Meldolesi J: Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994, 74: 595-636.

Clapham DE: Calcium signaling. Cell. 1995, 80: 259-268. 10.1016/0092-8674(95)90408-5.

Augustine GJ, Charlton MP, Smith SJ: Calcium action in synaptic transmitter release. Annu Rev Neurosci. 1987, 10: 633-693. 10.1146/annurev.ne.10.030187.003221.

Llinas R, Sugimori M, Silver RB: The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology. 1995, 34: 1443-1451. 10.1016/0028-3908(95)00150-5.

Turner RW, Maler L, Deerinck T, Levinson SR, Ellisman MH: TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron. J Neurosci. 1994, 14: 6453-6471.

Khodorov B: Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog Biophys Mol Biol. 2004, 86: 279-351. 10.1016/j.pbiomolbio.2003.10.002.

Nicholls DG, Budd SL: Mitochondria and neuronal survival. Physiol Rev. 2000, 80: 315-360.

Wu ML, Chen JH, Chen WH, Chen YJ, Chu KC: Novel role of the Ca(2+)-ATPase in NMDA-induced intracellular acidification. Am J Physiol. 1999, 277: C717-27.

Pinelis VG, Khodorov BI, Fajuk D, Zagulova D, Andreeva NA, Uvarova T, Khaspekov LG, Golovina VA, Viktorov IV: A persistent calcium-dependent decrease of cytoplasmic pH in cultured nerve cells induced by toxic glutamate treatment. Biologicheskie Membrany. 1992, 9: 1049-1051.

Brocard JB, Tassetto M, Reynolds IJ: Quantitative evaluation of mitochondrial calcium content in rat cortical neurones following a glutamate stimulus. J Physiol. 2001, 531: 793-805. 10.1111/j.1469-7793.2001.0793h.x.

Kiedrowski L, Costa E: Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. Mol Pharmacol. 1995, 47: 140-147.

Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A: Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A. 2004, 101: 10554-10559. 10.1073/pnas.0400417101.

Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR: Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989, 77: 51-59. 10.1016/0378-1119(89)90358-2.

Patterson G, Day RN, Piston D: Fluorescent protein spectra. J Cell Sci. 2001, 114: 837-838.